NATIONAL BOARD FOR TECHNICAL EDUCATION ## **CURRICULUM AND COURSE SPECIFICATIONS** NATIONAL DIPLOMA (ND) N ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY NOVEMBER, 2024 PLOT B, BIDA ROAD, P.M.B. 2239 KADUNA – NIGERIA www.nbte.gov.ng #### **FOREWORD** This curriculum has been strategically updated to provide skills and knowledge in the field of Electrical and Electronic Engineering Technology. It is designed to prepare technicians to contribute effectively to the diverse and critical industries that rely on electrical and electronic systems across Nigeria. The curriculum is structured to introduce students to the core principles, theories, and practical applications within electrical and electronic systems, laying a solid groundwork for further specialization and career development. It provides the technicians with the skills to support the design, installation, operation, and maintenance of various electrical and electronic systems and devices. I would like to express my sincere appreciation to the ERYK Group, industry professionals, and stakeholders whose valuable contributions and unwavering commitment were instrumental in the comprehensive review and updating of this vital curriculum. Their collective expertise ensures the relevance and contemporary applicability of this programme. It is my hope that the effective implementation of this National Diploma curriculum will create a robust pipeline of skilled technicians who will be instrumental in the development and maintenance of critical electrical and electronic infrastructure across Nigeria, significantly contributing to industrial growth, technological advancement, and national development. Prof. Idris M. Bugaje EXECUTIVE SECRETARY NBTE, KADUNA ## TABLE OF CONTENTS ### Contents | FOREWORD | | |--|-----------------| | TABLE OF CONTENTS | | | GENERAL INFORMATION | | | CURRICULUM TABLE | 14 | | YEAR ONE, SEMESTER ONE | 18 | | Algebra And Elementary Trigonometry | 19 | | Technical Drawing | | | Basic Workshop Practice and Technology | 4 | | Electrical Drawings | 62 | | Introduction to Digital Electronics | 68 | | Technical Documentation and Report Writing | | | Electrical Engineering Science I | 8; | | YEAR ONE, SEMESTER TWO | 105 | | Electrical Power I | 106 | | Electrical Machine I | 113 | | ELECTRONICS I | 118 | | Electrical Engineering Science II | 12 | | Electrical and Electronics measurement and Instrumentation | 135 | | Telecommunication I | 142 | | Electrical Installation of Buildings | 148 | | YEAR TWO, SEMESTER ONE | 160 | | Logic and Linear Algebra | 16 ⁻ | | Flectrical Power II | 170 | | Electrical Machine II | 1/9 | |---|-----| | Electronics II | 188 | | Electric Circuit Theory I | 192 | | Use of Electrical and Electronics Instrument | 201 | | Telecommunication II | 207 | | Computer Hardware and Software I | 216 | | Research Methods in Electrical and Electronics Engineering Technology | 226 | | YEAR TWO, SEMESTER TWO | 233 | | Trigonometry and Analytical Geometry | 234 | | Electrical Power III | 246 | | Computer Hardware and Software II | 255 | | Electronics III | 265 | | Electric Circuit Theory II | | | Introduction to Industrial Automation | 279 | | PRACTICAL MANUAL List of Minimum Resources | | | LIST OF PARTICIPANTS 2022 REVIEW WORKSHOP | 351 | | LIST OF PARTICIPANTS FOR 2024 REVIEW WORKSHOP | 352 | | AATIONAL BORRES | | | | | #### GENERAL INFORMATION 1.0 TITLE OF THE PROGRAMME - National Diploma (ND) in Electrical and Electronics Engineering Technology #### **2.0 GOAL AND OBJECTIVES OF THE PROGRAMME:** **2.1** GOAL: The programme is designed to produce skilled electrical and electronics engineering technicians for manufacturing, assembling, servicing, power generation, transmission, distribution and utilization, telecommunications and other related industries. #### **2.2 OBJECTIVES:** At the end of the programme the technician should be able to: - 1. Solve a range of engineering problems using appropriate mathematical and scientific principles. - 2. Support the construction of simple electrical and electronic circuits when necessary for use in modification or as a part of a system - 3. Assist in carrying out both preventive and corrective maintenance on simple electrical and electronic installations, equipment and appliances - 4. Select and use appropriate instruments to carry out simple tests and measurement on all types of electrical and electronic installation and equipment under various operating conditions. - 5. Coordinate and supervise craftsmen in activities related to electrical and electronic engineering services - 6. Set up and manage a Small or Medium Scale enterprises or Business - 7. Assist in producing technical drawings using appropriate conventions and techniques in engineering workshop settings - 8. Adhere to workshop safety practices - 9. Operate basic electrical/electronic tools and equipment - 10. Apply logical reasoning and problem solving methodologies to address engineering challenges. - 11. Conduct research in electrical and electronics engineering technology using appropriate research methods - 12. Draw and interpret electrical and electronics engineering drawings and schematics. - 13. Analyse electric current flow, energy relationships, and behaviour in resistive and capacitive systems - 14. Apply differentiation and integration techniques to model and solve engineering problems with the use of simulation software e.g. MATLAB - 15. Assist in implementing the principles of generation, transmission, and distribution of electrical energy with hands on practicals and industrial visits to relevant sites. - 16. Operate, maintain, and troubleshoot various electrical machines. - 17. Apply Alternating Current (AC) theory to analyse and sketch circuits. - 18. Assist in performing network analyses of multiphase systems using electrical circuit theorems. - 19. Analyse power systems and implement basic operational procedures. - 20. Conduct laboratory and industrial measurements using electrical/electronic instruments - 21. Implement basic telecommunication techniques and configure communication systems - 22. Assist in the installation of electrical systems in buildings according to relevant standards and regulations. - 23. Test and troubleshoot circuits containing passive and active electronic components. - 24. Support the analysis and design of simple digital electronic systems - 25. operate specialized software packages relevant to electrical and electronics engineering. - 26. Support in the diagnoses and repairs of simple faults on computer hardware and application software. - 27. Design and simulate electrical and electronics engineering systems. - 28. Program Programmable Logic Controllers (PLCs) - 29. Develop Human-Machine Interface (HMI) and Supervisory Control and Data Acquisition (SCADA) systems ### 3.0 GENERAL ENTRY REQUIREMENTS The entry requirements for National Diploma in Electrical and Electronics Engineering Technology are: - a. A minimum score in the Unified Tertiary Matriculation Examination (UTME) as stipulated by JAMB - b. Five (5) Credit O-level passes at West African Senior School Certificate Examination (WASSCE), Senior School Certificate Examination (SSCE) or their equivalents at not more than <u>TWO</u> sittings. The five (5) subjects must include English Language, Mathematics, Physics, Chemistry and any other science subject. - c. The National Technical Certificate (NTC) or its equivalent in electrical and electronics trade with credit passes as in (b) above. #### 4.0 DURATION The duration of the programme is two academic sessions consisting of four semesters of 17 weeks per semester. #### **5.0 CURRICULUM** - 1. The curriculum of all ND programmes consists of four main components. These are: - 3.1 General studies/Education - 3.2 Foundation courses - 3.3 Professional courses - 3.4 Supervised Industrial Work Experience Scheme (SIWES) - 2. The General Studies/Education component shall include courses in: - i. Art and Humanities English language, Communication. These are compulsory - ii. Mathematics and Science - iii. *Social Studies* Citizenship, political science, sociology, philosophy, geography, entrepreneurship studies. The courses in citizenship, entrepreneurship are compulsory. - 3. The General Studies/Education component shall account for not more than 15% of the total contact hours for the programme. - 4. Foundation courses include courses in Mathematics, Pure Science, Computer Science, Technical Drawing, Descriptive Geometry and Statistics, etc. The number of hours will vary with the programme and may account for about 10-15% of the total contact hours depending on the programme. - 5. Professional courses are courses which give the student the theory and practical skills he/she needs to practice in his/her field of specialization at the technician level. These may account for between 60-70% of the contact hours depending on the programme. 6. Supervised Industrial Work Experience (SIWES) shall be taken during the long vacation following the end of the second semester of the first year. See detail of SIWES at Paragraph 10.0. #### 6.0 CURRICULUM STRUCTURE The structure of the ND programme consists of four (4) semesters of class room, laboratory, field and workshop activities in the College and SIWES. Each semester shall be of seventeen (17) weeks duration made up as follows. - 1. Fifteen (15) contact weeks of teaching, i.e lecture, test, quizzes, recitation, practical exercise, etc. - 2. Two (2) weeks for the conduct of examinations. The SIWES registration shall take place at the end of the second semester of the first year for the ND programme. #### 7.0 ACCREDITATION The programme offered at the ND level shall be accredited by the NBTE before the diplomates can be awarded ND Certificate. Details about the process of accreditation for the award of the ND programme is
available from the Executive Secretary, National Board for Technical Education, Plot B, Bida Road, P.M.B 2239, Kaduna, Nigeria. ### 8.0 CONDITIONS FOR THE AWARD OF THE NATIONAL DIPLOMA Institutions offering accredited programmes will award the National Diploma to candidates who successfully completed the programme after passing prescribed course work, examination, diploma project and the supervised industrial work experience. Such candidates should have completed a minimum of between 65-75 semester credit units depending on the programme. ### **8.1 Grading of Courses:** Courses shall be graded as follows: | Mark Range | Letter Grade | Weighting | |---------------|--------------|-----------| | 75% and above | A | 4.00 | | 70% - 74% | AB | 3.50 | | 65% - 69% | В | 3.25 | | 60% - 64% | BC | 3.00 | | 55% - 59% | С | 2.75 | | 50% - 54% | CD | 2.50 | | 45% - 49% | D | 2.25 | | 40% - 44% | Е | 2.00 | | Below 40% | F | 0.00 | ### **8.2 Classification of Diplomas:** National Diplomas shall be classified as follows: Distinction - CGPA of 3.50 - 4.00 Upper Credit - CGPA of 3.00 - 3.49 Lower Credit - CGPA of 2.50 - 2.99 Pass - CGPA of 2.00 - 2.49 # 9.0 QUALIFICATION OF THE TEACHERS # 9.1 Holders of BSc / HND and Higher Degrees in: i. Electrical/ Electronic Engineering, - 9.2 In addition, teachers of this programme should have been trained and certified by: - (a) Council for the Regulation of Engineering in Nigeria (COREN) - (b) Industrial certifications in Engineering ### 9.3 Headship of the Department: Holders of HND or Bachelor's degree in any of the Electrical and Electronics Engineering Higher Degree: Electronics and Communications, Instrumentation and Control, Power and Machines Engineering, who must not be below the rank of a Senior Lecturer #### 10.0 GUIDANCE NOTES FOR TEACHERS OF THE PROGRAMME - 10.1 The new curriculum is drawn in unit courses. This is in keeping with the provisions of the National Policy on Education which stress the need to introduce the semester credit units that will enable a student who wish to transfer the units already completed in an institution of similar standards from which he is transferring - 10.2 In designing the units, the principle of the modular system by the product has been adopted; thus making each of the professional modules, when completed provides the students with technician operative skills, which can be used for the employment purposes. Also, he can move ahead for post ND studies. - 10.3 As the success of the credit unit system depends on the articulation of the programmes between the institution and industry, the curriculum content has been written in behavioural objectives, so that it is clear to all, the expected performance of the student who successfully completed some of the courses to the diplomate of the programme. There is slight departure in the presentation of the performance-based curriculum which requires the conditions under which the performance are expected to be carried out and the criteria for the acceptable levels of performance. It is a deliberate attempt to further involve the staff of the department teaching the programme to write their own curriculum stating the conditions existing in their institution under which the performance can take place and to follow that with the criteria for determining an acceptable level of performance. Departmental submission of the final curriculum maybe vetted by the Academic Board of the institution for ensuring minimum standard and quality of education in the programmes offered throughout the polytechnic system. 10.4 The teaching of the theory and practical work should, as much as possible, be integrated. Practical exercises, especially those in professional course and laboratory work should be taught in isolation from the theory. For each course, there should be a balance of theory-practical in the ratio of 50:50 or 60:40 or the reverse. #### 11.0 GUIDELINES ON SIWES PROGRAMME 11.1 For the smooth operation of the SIWES, the following guidelines shall apply: #### i. RESPONSIBILITY FOR PLACEMENT OF STUDENTS Institution offering the ND programme shall arrange to place the students in the industry. Latest by April 30 of each year; six copies of the master list showing where each student has been placed shall be submitted to the Executive Secretary, NBTE which shall, in turn authenticate the list and forward it to the Industrial Training Fund (ITF), Jos. - ii. The Placement Officer should discuss and agree with industry on the following: - a) A task inventory of what the students should be expected to experience during the period of attachment. It may be wise to adopt the one already (ND) approved for each field. - b) The industry-based supervisor of the students during the period likewise the institution-based supervisor. The evaluation of the students during the period. It should be noted that the final grading of the student during the period of attachment should be weighted on the evaluation by his industry-based supervisor. ### 11.2 EVALUATION OF STUDENTS DURING SIWES In the evaluation of the student, cognizance should be taken of the following items: - i. Punctuality - ii. Attendance - iii. General Attitude to work - iv. Respect for authority - v. Interest in the field/technical area - vi. Technical competence as a potential technician in his field. #### 11.3 GRADING OF SIWES To ensure uniformity of grading scale, the institution should ensure that uniform grading of student's work which has been agreed to by all polytechnics is adopted. #### 11.4 THE INSTITUTION BASED SUPERVISOR The institution-based supervisor should endorse the logbook during each visit. This will enable him to check and determine to what extent the objectives of the scheme are being met and to assist students having any problem regarding the specific assignments given to them by their industry-based supervisor. ### 11.5 FREQUENCY OF VISIT Institutions should ensure that students placed on attachment are visited within one month of their placement. Other visits shall be arranged so that: - i. There is another visit six (6) weeks after the first visit; and - ii. A final visit in the last month of the attachment. ### 11.6 STIPEND FOR STUDENTS ON SIWES The rate of stipend payable shall be determined from time to time by the Federal Government after due consultation with the Federal Ministry of Education, the Industrial Training Fund and the NBTE. #### 11.7 SIWES AS A COMPONENT OF THE CURRICULUM The completion of SIWES is important in the final determination of whether the student is successful in the programme or not. Failure in the SIWES is an indication that the student has not shown sufficient interest in the field or has no potential to become a skilled technician in his field. The SIWES should be graded also on credit unit system. Where a student has satisfied all other requirements but failed SIWES, he may only be allowed to repeat another four (4) months SIWES at his own expense. #### 11.8 LOGBOOK The candidates are expected to record and up-keep a personal logbook. This will contain daily and weekly summary of curricular activities carried out by the candidates for each semester. The ND programme coordinator of the department will supervise the assessment and evaluation of the logbook. #### 12.0 FINAL YEAR PROJECT Final year students in this programme are expected to carry out a project work. This could be on individual basis or group work. The project should, as much as possible incorporate basic element of design, drawing and complete fabrication of a marketable item or something that can be used. Project reports should be well presented and should be properly supervised. The departments should make their own arrangement of schedules for project work. ### 13.0 MANDATORY SKILLS QUALIFICATIONS (MSQ) See guidelines for the implementation of MSQ in Polytechnics in Nigeria vide the NBTE website ### **CURRICULUM TABLE** ### YEAR I SEMESTER I | Course Code | Course Title | Y | P | CU | СН | |--------------------|--|----|----|----|----| | GNS 101 | Use of English I | 2 | 0 | 2 | 2 | | GNS 111 | Citizen Education I | 2 | 0 | 2 | 2 | | MTH 112 | Algebra and Elementary Trigonometry | 2 | 0 | 2 | 2 | | MEC 111 | Technical Drawing | 1 | 3 | 3 | 4 | | MEC 113 | Basic Workshop Technology and Practice | 1 | 3 | 3 | 4 | | EEC 111 | Electrical Drawings | 1 | 3 | 3 | 4 | | EEC 112 | Introduction to Digital Electronics | 2 | 1 | 3 | 3 | | EEC 113 | Technical Documentation and Report Writing | 1 | 3 | 3 | 4 | | EEC 114 | Electrical Engineering Science I | 1 | 2 | 3 | 3 | | EEC 115 | Industrial Health and Safety | 1 | 1 | 2 | 2 | | MSQ | Mandatory Skills Qualification | 0 | 0 | 0 | 2 | | | TOTAL | 14 | 16 | 26 | 32 | ^{*} All GNS courses are to be obtained in GNS curriculum ### YEAR I SEMESTER II | Course Code Course Title GNS 102 Communication in English I | E | P | | |--|----|----|----| | - V | | P | CU | | CNIC 101 C'd' 1' E1 d' H | -2 | 0 | 2 | | GNS 121 Citizenship Education II | 2 | 0 | 2 | | ENT 126 Introduction to Entrepreneurship I | 2 | 1 | 3 | | MTH 211 Calculus | 2 | 0 | 2 | | EEC 121 Electrical Power I | 1 | 2 | 2 | | EEC 122 Electrical Machine I | 1 | 2 | 2 | | EEC 123 Electronics I | 1 | 2 | 2 | | EEC 124 Electrical Engineering Science II | 1 | 2 | 3 | | EEC 125 Electrical and Electronics measurement and Instrumentation | 1 | 3 | 2 | | EEC 126 Telecommunications I | 1 | 2 | 2 | | EEC 127 Electrical Installation of Buildings | 1 | 2 | 2 | | MSQ Mandatory Skills Qualification | 0 | 0 | 0 | | TOTAL | 15 | 16 | 24 | ### YEAR II SEMESTER I | Course Code | Course Title | L | P | CU | СН | |--------------------|---|----|----|----|----| | GNS 211 | Use of English II | 2 | 0 | 2 | 2 | | ENT 216 | Introduction to Entrepreneurship II | 2 | 1 | 3 | 3 | | MTH 202 | Logic and Linear Algebra |
2 | 0 | 2 | 2 | | EEC 211 | Electrical Power II | 1 | 2 | 2 | 3 | | EEC 212 | Electrical Machines II | 1 | 2 | 2 | 3 | | EEC 213 | Electronics II | 1 | 3 | 3 | 4 | | EEC 214 | Electrical Circuit Theory | 1 | 2 | 2 | 3 | | EEC 215 | Use of Electrical and Electronics Instruments | 1 | 2 | 2 | 3 | | EEC 216 | Telecommunications II | 1 | 2 | 2 | 3 | | EEC 217 | Computer Hardware and Software I | 1 | 2 | 2 | 3 | | EEC 218 | Research Methods in Electrical Engineering | 2 | 0 | 2 | 2 | | | TOTAL | 15 | 16 | 24 | 31 | ^{*} All GNS courses are to be obtained in GNS curriculum ### YEAR II SEMESTER II | Course Code | Course Title | L | P | CU | СН | |-------------|---------------------------------------|----|----|----|----| | GNS 202 | Communication in English II | 2 | 0 | 2 | 2 | | MTH 221 | Trigonometry and Analytical Geometry | 2 | 0 | 2 | 2 | | EEC 221 | Electrical Power III | 1 | 2 | 2 | 3 | | EEC 222 | Computer Hardware and Software II | 1 | 2 | 2 | 3 | | EEC 223 | Electronics III | 1 | 2 | 3 | 4 | | EEC 224 | Electrical Circuit Theory II | 1 | 2 | 2 | 3 | | EEC 225 | Introduction to Industrial Automation | 2 | 2 | 3 | 4 | | EEC 226 | Project | 0 | 0 | 4 | 4 | | | TOTAL | 10 | 10 | 20 | 25 | ^{*} All GNS courses are to be obtained in GNS curriculum # Key L - Lecture P - Practical CU - Credit Unit CH - Credit Hour ...AR ONE, SEMESTER SEE # Algebra And Elementary Trigonometry | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | |--|----------------------|------------------|--|--|--|--|--| | COURSE: Algebra And Elementary Trigonometry | COURSE CODE: MTH 112 | CONTACT HOURS: 2 | | | | | | | | CREDIT UNITS: 2 | THEORETICAL: 2 | | | | | | | YEAR: I SEMESTER: | PRE-REQUISITE: | PRACTICAL: 0 | | | | | | **GOAL:** This course is designed to provide the students with mathematical knowledge and skills essential for solving a range of engineering problems GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Understand the laws of indices and their application in simplifying Algebraic expressions. - 2.0 Understand the theory of logarithms and surds and their applications in manipulating expressions. - 3.0 Understand principles underlying the construction of charts and graphs. - 4.0 Know the different methods of solving quadratic equations. - 5.0 Understand Permutation and Combination. - 6.0 Understand the set theory. - 7.0 Understand the properties of arithmetic and geometric progressions. - 8.0 Understand the binomial and its application in the expansion of expressions - 9.0 Understand the basic concepts and manipulation of vectors and complex number and their applications to the solution of engineering problems. - 10.0 Understand the definition, manipulation and application of trigonometric function. - 11.0 Understand the concept of equations and methods solving different types of equations and apply same to engineering problem. | PROGE | RAMME: NATIONAL D | OIPLOMA IN ELECTRIC | CAL AND ELE | CTRONICS ENGINEERIN | NG TECHNOLOGY | | |---|---------------------------|----------------------------|-------------------|-----------------------------|---------------------------|----------------| | COURSE: Algebra And Elementary Trigonometry | | | COURSE C | ODE : MTH 112 | CONTACT HOURS: 2 | | | | | | CREDIT UN | NIT: 2 | THEORETICAL: 2 | , | | YEAR: | I SEMESTER: I | | PRE-REQU | ISITE: | PRACTICAL: 0 |) | | COURS | SE SPECIFICATION: | THEORETICAL AND P | RACTICAL | | • | | | GOAL: | This course is designed t | o provide the students wi | th mathematica | l knowledge and skills esse | ntial for solving a range | of engineering | | oroblem | ıs | | | | | | | Genera | l Objective 1.0: Understa | and laws of indices and th | eir applications | in simplifying algebra exp | ressions. | | | THEO | RETICAL CONTENT | | | PRACTICAL CONTEN | Т | | | Week | Specific Learning | Teacher's Activities | Resources | Specific Learning | Teacher's Activities | Resources | | | Outcome | | | Outcome | | | | 1 | 1.1 Define index. | Explain index | Textbooks | | Guide students to: | Calculators | | | | | Journals | Establish the laws of | Establish the laws of | | | | 1.2 Establish the laws of | Explain the laws of | White Board | Indices. | Indices. | | | | Indices. | indices. | Marker | | | | | | | | Computer | Solve problems using the | Solve problems using | | | | 1.3 Explain how to | | Projector | laws of indices | the laws of indices | | | | solve simple | problems using the laws | Internet | | | | | | problems using the | of indices. | | | | | | | laws of indices. | | | | | | | Genera | l Objective 2.0: Understa | and theory of logarithms s | surds and their a | pplications in manipulating | g expression. | | | 2-3 | 2.1 Define logarithm | Explain logarithm | Textbooks | | Guide students to: | Calculator | | | | | Journals | Solve simple logarithms | Solve simple logarithms | | | | 2.2 Establish the four | Explain the four basic | White Board | problem. | problem. | | | | basic laws of | laws of logarithm | Marker | | | | | | | | | | | | | 1 | | _ | | • | |---------------------------|---|--------------|-----------|---| | logarithm. | | Computer | | | | | | Projector | | | | 2.3 Explain how to | Explain how to solve | Internet | | | | solve simple | simple logarithmic | Lecture Note | | | | logarithms problem. | problems. | | | | | 2.4 Define natural | Explain natural | | | | | logarithm and | logarithm and common | | | | | common logarithm. | logarithm | | 170 | | | 2.5 Define characteristic | Explain characteristic | | M_{ν} | | | and mantissa. | and mantissa. | | · CX / · | | | 2.6 Explain how to read | Explain how to read the | | | | | the logarithmic table | | | | | | | given numbers. | R | | | | 2.7 Explain how to | Explain how to simplify | | | | | simplify numerical | numerical expressions | | | | | expressions using | using tables: | | | | | tables: | e.g. 18D = | | | | | e.g. 18D = | $3/4 \text{JPC}^2 \text{AM}^{\text{B}}$ | | | | | $3/4JPC^2AM^B$ | find D when $J =$ | | | | | find D when J = | 0935, | | | | | 0935, | 0 = 35, P = 1.6 | | | | | 0 = 35, P = 1.6 | 10^6 , C = 55, M = | | | | | 10^6 , C = 55, M = | 00025 | | | | | 00025 | $\Pi = 3.142$ | | | | | | | 1 | | | | * | |---|---------------------------|-------------------------|-------------|---------------------------|------------------------|------------| | | $\Pi = 3.142$ | | | | | | | | 2.8 Explain how to | Explain how to apply | | | , 10' | | | | apply logarithm in | logarithm in solving | | | | | | | solving non-linear | non-linear equations. | | | | | | | equations. | e.g. $y = ax^n$, | | | | | | | e.g. $y = ax^n$, | logy=log a + | | | | | | | logy=log a + | $n \log x; y = bc^x,$ | | | | | | | $n \log x; y = bc^x,$ | logy = logb + | | (U). | | | | | logy = logb + | $xlogc; y = a + bx^n,$ | | 1/10. | | | | | $xlogc; y = a + bx^n,$ | | | | | | | | Log (y-a) = Logb | + nlogx, | | `(\), | | | | | + nlogx, | | | | | | | | 2.9 Define surds. | Explain surds. | | | | | | | | | | | | | | | 2.10 Explain how to | Explain how to reduce a | | | | | | | reduce a surd into | surd into its simplest | V | | | | | | its simplest form. | form. | , | | | | | | | | V | | | | | | _ | Explain how to solve | | | | | | | _ | simple problems on | | | | | | | problems on surds. | | | | | | | | al Objective 3.0: Underst | | 1 | on of charts and graphs. | | | | 4 | • | Explain how to | Textbooks | | Guide students to: | Calculator | | | construct graphs of | | Journals | Apply knowledge from | Apply knowledge from | | | | | functions such as: | White Board | 3.1in termination as laws | 3.1in termination as | | | | Y + ax = b, n = 1, | Y + ax = b, n = 1, | Marker | from experimental data. | laws from experimental | | | | 2Y = CST(a+a) | 2Y = CST(a+a) | Computer | | data. | | |---|-------------------------------|-------------------------|--------------|----------------------------|---------------------------|------------| | | $Y=ax^k$, including | $Y=ax^k$, including | Projector | | | | | | cases of | cases of asymbles. | Internet | Ask the students to draw | Ask the students to | | | | asymbles. | | Lecture Note | graphs. | draw graphs. | | | | | | | | | | | | 3.2 Explain how to | Explain how to apply | | | | | | | apply knowledge | knowledge from 3.1in | | | | | | | from 3.1in | termination as laws | | | | | | | termination as laws | from experimental data. | | ·40' | | | | | from experimental | | | | | | | | data. | | | | | | | | Objective 4.0: Know th | | | equations. | | | | 5 | • | Explain how to solve | Textbooks | | | Calculator | | | - | quadratic equation by | Journals 🗸 | Solve quadratic | Solve quadratic | | | | 1 | factorisation. | White Board | equation by factorisation. | equation by factorisation | | | | factorisation. | | Marker | | | | | | | | Computer | | | | | | 4.2 Explain how to solve | • | Projector | | | | | | | | Internet | | | | | | • | | Lecture Note | | | | | | completing squares. | squares. | | | | | | | 4.2 E1-i14- | E1-in 100 | | | | | | | • | Explain how to solve | | | | | | | = | quadratic equations by | | | | | | | equations by formula. | formula. | | | | | | | iofiliula. | | | | | | | | 4.4 Determine the roots. | Determine the roots. | | | | | | | | 1 | T. | | | |--------|--|---|---------------------------------------|--|--| | | 4.5 Explain how to form equations whose roots are given in different methods. | Explain how to form equations whose roots are given in
different methods. | | | CONCAN | | Genera | l Objective 5.0: Underst | and Permutations and Co | mbinations. | | | | 6 | 5.1 Define permutation. | Explain permutation. | Textbooks | | | | | 1 | Explain examples of permutations. | Journals
White Board
Marker | MICH | | | | 5.3 Define combination. | Explain combination. | Computer
Projector
Internet | KCI. | | | | - | Explain examples of combination. | Lecture Note | | | | | theorem nPr=n!/[!] giving examples e.g.: number of | Explain the theorem nPr=n!/[!] giving examples e.g.: number of ways of collecting two out of 8 balls. | 260 | | | | Genera | Objective 6.0: Underst | and the concept of set the | ory. | | | | 7 | 6.1 Establish ⁿC_r = ⁿC_n - r. 6.2 Define sets, subsets, and null sets. | Explain ${}^{n}C_{r} = {}^{n}C_{n}$ -r.
Explain sets, subset, and null sets | Textbooks Journals White Board Marker | Solve set theory problems using Venn diagrams. | Guide students to: Solve set theory problems using Venn diagrams | | | | Computer | | | |-------------------------|-------------------------|--------------|-----|--| | | Explain union, | Projector | | | | section and | | Internet | | | | completion of sets. | completion of sets. | Lecture Note | | | | 6.4 Explain how to draw | Explain how to draw | | | | | | Venn diagrams to | | | | | | demonstrate the | | | | | concepts in $6.1 - 6.3$ | | | 2() | | | | above. | | | | | | | | | | | 6.5 Explain how to | Explain how to | | | | | calculate the size or | calculate the size or | | | | | number of elements | number of elements in a | | | | | in a given set. | given set. | | | | | | | | | | | | | 10. | | | | | | X | 20) , | | | | | | V | ` | | | | | 7.1 Define an | erstand the properties of ariting Explain an Arithmetic | Textbooks | | Guide students to: | Calculator | |-----------------------|---|----------------|---------------------------|--------------------------|------------| | Arithmetic | progression (A.P.). | Journals | Obtain the formula for | Obtain the formula for | | | progression (A.P.) | , , | White Board | nth term and the first n | nth term and the first n | | | progression (14.11.) | • | Marker | terms of an A. P. | terms of an A. P. | | | 7.2 Explain how to | Explain how to obtain | Computer | | | | | obtain the formula | * | · - | Ask the students to apply | Ask the students to | | | | and the first n terms of | Internet | progression to solve | apply progression to | | | first n terms of an | | Lecture Note | problems. | solve problems. | | | P. | 71. MII 71. 1 . | Lecture 1 vote | problems. | sorve problems. | | | 1. | | | | | | | 7.3 Give examples of | the Explain examples of the | | | | | | above e.g. find the | | | | | | | _ | ries20 th term of the series | | | | | | e.g.: 2, 4, 6, | e.g.: 2, 4, 6, 8 Find | • | | | | | | also the series of the firs | | | | | | series of the first 2 | | | | | | | terms. | 20 terms. | | | | | | terms. | | | | | | | 7.4 Define geometric | Explain geometric | | | | | | progression (G.P.) | | | | | | | progression (G.1.) | progression (d.i.) | | | | | | 7.5 Explain how to | Explain how to obtain | | | | | | obtain the formula | 1 | | | | | | for the nth term an | | | | | | | the first n terms of | | | | | | | geometric series | geometric series. | | | | | | geometric series | geometric series. | | | | | | | <u> </u> | | | | <u> </u> | | WAL | | | 26 | * | |--------|---------------------------|------------------------------------|---------------------|-------------------------|------------|----------| | | 7.6 State examples of | | | | | | | | 7.5 above e.g.; given | Explain examples of 7.5 | | | | | | | the sequences $1/3$, 1, | above e.g.; given the | | | , 10, | | | | | sequences 1/3, 1, 3 ½ | | | | | | | 20th term and hence | find the 20 th term and | | • | | | | | the sum of the 1st 20 | hence the sum of the | | | | | | | terms. | 1 st 20 terms. | | | | | | | | | | | | | | | 7.7 Define Arithmetic | | | (U) | | | | | Mean (AM) and | Explain Arithmetic | | | | | | | Geometric Mean | Mean (AM) and | | | | | | | (G.M.). | Geometric Mean | | | | | | | | (G.M.). | | | | | | | 7.8 Define convergence | | | | | | | | of series. | Explain convergence | | | | | | | | of series. | | | | | | | 7.10 Define divergence | | | | | | | | of series. | Explain divergence of | | | | | | | | series. | | | | | | Genera | l Objectives 8.0: Underst | and the binomial theorem | and its application | of expressions in appro | ximations. | | | 10 | 8.1 Explain the method | Explain the method | Textbooks | | | | | | of mathematical | of mathematical | Journals | | | | | | induction. | induction. | White Board | | | | | | | | Marker | | | | | | 8.2 State the binomial | Explain the binomial | Computer | | | | | | theorem for a | theorem for a positive | Projector | | | | | | positive integral | integral index. | Internet Lecture | | | | | | <u></u> | T | <u></u> | | _ | |---------------------------|------------------------------------|------|---------|-------|---| | index. | | Note | | | | | | | | | | | | 8.3 Explain how to | Explain how to expand | | | . 10" | | | expand expressions | expressions of the forms | | | | | | of the forms $(x=y)^2$, | $(x=y)^2$, $(x^2-$ | | | | | | $(x^2-1)^8$ applying | 1) ⁸ applying binominal | | X | | | | | theorem. | | | | | | | | | | | | | 8.4 Explain how to find | Explain how to find the | | 2() | | | | the coefficient of | coefficient of | | | | | | | a particular term in the | | | | | | the expansion of | expansion of | | | | | | simple binomial | | | | | | | - | simple binomial | | | | | | expressions. | expressions. | | | | | | 0.5 [1 | E 1:1 4 6 141 | 0 | | | | | • | Explain how to find the | | | | | | the middle term in | middle term in the | | | | | | the expansion of | expansion of | | | | | | binomial expression | binomial expression | | | | | | | | | | | | | 8.6 State the binomial | Explain the binomial | | | | | | theorem for a | theorem for a rational | | | | | | rational index. | index. | | | | | | | | | | | | | 8.7 Explain how to | Explain how to expand | | | | | | expand expressions | expressions of the form: | | | | | | of the form: $(1=x)^{-1}$ | $(1-x)^{-1}$, $(1-x)^{-1/2}$ (1- | | | | | | $(1-x)^{1/2}(1-$ | x) applying | | | | | | | x) applying binomial theorem. | binomial theorem. | | | (A) | | |---------|--|---|-----------------|---|---|-------------| | | 8.8 Explain how to | Explain how to expand | | | | | | | expand and approximate | and approximate | | | | | | | expressions of the | expressions of the | | | | | | | type (1.001) n, $(0.998)^n$, | type (1.001) n, $(0.998)^n$, | | | | | | | $(1=x)^{1/2}$, $(-x)^-$ to a | $(1=x)^{1/2}$, $(-x)^-$ to a | | | | | | | state degree of accuracy | state degree of accuracy | | | | | | | applying/scalar | applying/scalar | | | | | | | expression. | expression. | | 11/4 | | | | Genera | l Objectives 9.0: Unders | tand the basic concepts ar | nd manipulation | of vectors and their appli | cations to the solution of e | engineering | | problem | ıs. | | | ·(\) | | | | 11 - 12 | 9.1 Define vectors | Explain vectors | Textbooks / | | Guide students to: | | | | | | Journals 🦱 | Apply the techniques of | Apply the techniques of | | | | 9.2 Explain the | Explain the | White Board | vectors to solve various | vectors to solve various | | | | representations of | representations of | Marker | problems | problems | | | | vectors. | vectors. | Computer | | | | | | | | Projector | Apply the parallelogram | Apply the parallelogram | | | | 9.3 Define a position | Explain a position | Internet | law in solving | law in solving | | | | vector. | vector. | Lecture Note | problems including | problems including | | | | | OK. | | addition and subtraction | addition and subtraction | | | | 9.4 Define unit vector. | Explain unit vector. | | of vectors. | of vectors. | | | | | | | | | | | | 9.5 Explain scalar | Explain scalar multiple | | Compute the resultant | Compute the resultant | | | | multiple of a vector. | of a vector. | | of coplanar forces acting | of coplanar forces | | | | | ' | | at a point using | acting at a point using | | | | 9.6 List the | Explain the | | algebraic and graphical | algebraic and graphical | | | | vector. 9.4 Define unit vector. 9.5 Explain scalar multiple of a vector. | vector. Explain unit vector. Explain scalar multiple of a vector. | Lecture Note | problems including addition and subtraction of vectors. Compute the resultant of coplanar forces acting at a point using | problems including addition and subtraction of vectors. Compute the resultant of coplanar forces acting at a point using | | | characteristics of | characteristics of | | method | method | | |-------------------------|---------------------------|---|---------------------------|---------------------------|--| | parallel vectors. | parallel vectors | | | | | | | | | Apply the techniques | Apply the techniques | | | 9.7 Identify quantities | Explain quantities | | of resolution and | of resolution and | | | that may be | that may be classified as | | resultant to the solution | resultant to the solution | | | classified as vector | vector e.g. | | of problems involving | of problems involving | | | e.g. displacement, | displacement, velocity, | | coplanar forces. | coplanar forces. | | | velocity, | acceleration, force, etc. | | | | | | acceleration, force,
| | | Apply vectorial | Apply vectorial | | | etc. | | | techniques in solving | techniques in solving | | | | | | problems involving | problems involving | | | 9.8 Explain how to | Explain how to compute | | relative velocity. | relative velocity. | | | compute the | the modules of any | | | | | | modules of any | given vector up to 2 and | | Compute the | Compute the | | | given vector up to | 3 dimensions. | | scalar product of given | scalar product of given | | | 2 and 3 dimensions. | | | vectors. | vectors. | | | | | | | | | | 9.9 State the | Explain the | | Compute the | Compute the | | | parallelogram law in | parallelogram law in | | scalar product of given | scalar product of given | | | solving problems | solving problems | | vectors. | vectors. | | | including addition | including addition and | · | | | | | and subtraction of | subtraction of vectors. | | Calculate the | Calculate the | | | vectors. | | | direction ratios of given | direction ratios of given | | | | | | vectors. | vectors. | | | 9.10 Explain how to | Explain how to apply | | | | | | apply the | the parallelogram law in | | Calculate the | Calculate the | | | parallelogram law in | solving | | angle between two | angle between two | | | | | | | | | | | | | | | * | |---------------------------|---------------------------|---|---------|---------|----------| | problems including | addition and subtraction | 1 | product | product | | | addition and | of vectors. | | | | | | subtraction of | | | | , 10" | | | vectors. | | | | | | | | | | | | | | 9.11 Explain | Explain components of | | | | | | components of a | a vector | | | • | | | vector | | | | | | | | | | | | | | 9.12 Explain orthogonal | Explain orthogonal | ı | | | | | components. | components. | | | | | | | | | | | | | 9.12 Resolve a vector | Explain a vector into its | | | | | | into its orthogonal | orthogonal components. | | | | | | components. | 9.13 List characteristics | | | | | | | of coplanar localized | of coplanar localized | | | | | | vectors | vectors | | | | | | | | | | | | | 9.14 Define the resultant | _ | ı | | | | | or composition of | or composition of | ı | | | | | coplanar vectors. | coplanar vectors. | ı | | | | | | | ı | | | | | 9.15 Explain how to | Explain how to compute | | | | | | compute the | the resultant of coplanar | | | | | | resultant of coplanar | forces acting at a point | I | | | | | forces acting at a | using algebraic and | | | | |-----------------------|---------------------------|---|--|--| | point using | graphical method | | | | | algebraic and | | | | | | graphical method | | | | | | | | | | | | 9.16 Explain how to | Explain how to apply | | | | | apply the techniques | the techniques | | , The state of | | | of resolution and | of resolution and | | | | | resultant to the | resultant to the solution | | | | | solution of | of problems involving | | | | | problems involving | coplanar forces. | | | | | coplanar forces. | | | | | | | | | | | | 9.17 Explain how to | Explain how to apply | | | | | apply vectorial | vectorial techniques in | | | | | techniques in | solving problems | , | | | | solving problems | involving relative | | | | | involving relative | velocity. | | | | | velocity. | | | | | | | | | | | | 9.18 State the scalar | Explain the scalar | | | | | product of two | product of two vectors. | | | | | vectors. | 00 | | | | | 9.19 Explain how to | Explain how to compute | | | | | compute the | the scalar product | | | | | scalar product | of given vectors. | | | | | of given vectors. | of given vectors. | | | | | of given vectors. | | | | | | | | | | | | • | |---------|--|--|--|---|--|------------| | | | Explain the cross product of two vectors. | | | OUCAI | | | | calculate the direction ratios of | Explain how to calculate the direction ratios of given vectors. | | ich | | | | | calculate the angle between two vectors using the | Explain how to calculate the angle between two vectors using the scalar product. | | ECHIM. | | | | General | Objectives 10.0: Unders | stand the concepts of equa | tions and apply | it to engineering problems | | | | 13-14 | 10.1 Explain the concept of equation, i.e. AX + B = D where A and B are expressions. | Explain the concept of equation, i.e. AX + B € D where A and B are expressions. | Textbooks Journals White Board Marker Computer Projector | Solve carious equations as indicated in section 10. | Guide students to:
Solve carious | Calculator | | | 10.2 List different types of equations: • Linear • Quadratic • Cubic, etc | Explain different types of equations: Linear Quadratic Cubic, etc. | Internet
Lecture Note | Apply algebraic and graphical methods in solving two simultaneous equations a linear equation and a quadratic | Apply algebraic and graphical methods in solving two simultaneous equations a linear | | | | | 1 | T | | <u> </u> | |------------------------|--------------------------|---|--------------------------|-----------------------|----------| | | | | equation | equation and a | | | 10.3 State examples of | _ • | | | quadratic equation | | | linear simultaneous | linear simultaneous | | | | | | equations with two | equations with two | | Apply the algebraic and | Apply the algebraic | | | unknowns and | unknowns and | | graphical methods in | and graphical methods | | | simultaneous | simultaneous equations | | solving two simultaneous | in solving two | | | equations with at | with at least one | | and quadratic equations. | simultaneous and | | | least one quadratic | quadratic equation | | | quadratic equations. | | | equation. | | | , (U) | | | | | | | | | | | 10.4 Explain how to | Explain how to apply | | Apply determinants of | Apply determinants of | | | apply algebraic and | algebraic and graphical | | order 2 and 3 in solving | order 2 and 3 in | | | graphical methods | methods in solving two | | simultaneous linear | solving simultaneous | | | in solving two | simultaneous equations a | | equations. | linear equations. | | | simultaneous | linear equation and a | | | | | | equations a linear | quadratic equation | | | | | | equation and a | | | | | | | quadratic equation | | Y | | | | | | | | | | | | 10.5 Explain how to | Explain how to apply the | | | | | | | algebraic and graphical | | | | | | and graphical | methods in solving two | | | | | | methods in solving | simultaneous and | | | | | | two simultaneous | quadratic equations | | | | | | and quadratic | | | | | | | equations. | | | | | | | 10.6 Define a | Explain a determinant of | | | | | | determinant | n th order | | | | | | | | | 1 | | | * | |---------|---------------------------|---------------------------|------------------|----------------------------|------------|---| | | of n th order. | | | | | | | | 10.7 Explain how to | Explain how to apply | | | (1) | | | | apply | determinants of order 2 | | | | | | | determinants of | and 3 in solving | | | | | | | order 2 and 3 in | simultaneous linear | | | | | | | solving | equations | | | | | | | simultaneous | | | | | | | | linear equations. | | | (U) | | | | General | Objectives 11.0: Under | stand the definition, man | ipulation and ap | plication of trigonometric | functions. | | | 15 | 11.1 Define the basic | Explain the basic | Textbooks | | | | | | trigonometric | trigonometric ratios, | Journals | $\mathcal{L}(X)$ | | | | | ratios, sine, cosine | sine, cosine and tangent | White Board | | | | | | and tangent of | of an angle | Marker | | | | | | an angle. | | Computer | | | | | | | | Projector
 , | | | | | 11.2 Derive the other | Explain the other | Internet | | | | | | trigonometric | trigonometric ratios: | Lecture Note | | | | | | ratios; cosecant, | cosecant, secant and | , | | | | | | secant and | cotangent using the | | | | | | | cotangent using the | | | | | | | | basic trigonometric | ratios in 11.1 above | | | | | | | ratios in 11.1 | | | | | | | | above. | | | | | | | | | N | | | | | | | 11.3 Derive identities | Explain identities | | | | | | | involving the | involving the | | | | | | | trigonometric ratios | trigonometric ratios of | | | | | | of the form; | the form: | | |-------------------------|-------------------------|--| | $\cos^2 + \sin^2 = 1$, | $\cos^2 + \sin^2 = 1$, | | | $Sec^2=1=tan2$, etc. | $Sec^2=1=tan2$, etc. | | | 11.4 Derive the | Explain the compound | | | | angle formulae for sin | | | formulae for sin | A-B), Cos (A-B) and | | | (A-B), Cos (A-B) | Tan (A-B). | | | and Tan (A-B). | | | **EVALUATION** C/A:40% EXAMS: 60% TOTAL: 100% #### ASSESSMENT STRUCTURE | TYPE OF | YPE OF PURPOSE AND NATURE OF ASSESSMENT | | |-------------|---|-----| | ASSESSMENT | | | | Examination | Final Examination (written) to assess knowledge and understanding | 60 | | Test | At least 2 progress tests for feedback. | 20 | | Course Work | At least 5 home works to be assessed by the teacher | 20 | | TOTAL | | 100 | # **Technical Drawing** | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | |--|----------------------|------------------|--|--|--| | COURSE TITLE: Technical Drawing | COURSE CODE: MEC 111 | CONTACT HOURS: 4 | | | | | | CREDIT UNITS: 3 | THEORETICAL: 1 | | | | | YEAR: SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 3 | | | | **GOAL:** This course is designed to acquaint students with the fundamentals of technical drawing and its applications in engineering technology GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Know different drawing instrument, equipment and materials - 2.0 Understand the essentials of graphical communications - 3.0 Know the construction of simple geometrical figures and sections - 4.0 Know the Construction of isometric and oblique drawing and projection - 5.0 Understand principles of orthographic projections. - 6.0 Understand the intersections of regular solids | PROGE | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | |---------------------------------|--|----------------------------|------------------------|----------------------|-----------------------------|---------------| | COURSE TITLE: Technical Drawing | | | COURSE CODE: MEC 111 C | | ONTACT HOURS: 4 | | | | | | CREDIT UN | NITS: 3 | THEORETICAL: 1 | | | YEAR: | SEMESTER: I | | PRE-REQU | ISITE: | PRACTICAL: 3 | | | GOAL: | This course is designed to acquain | students with the fundam | entals of techn | ical drawing and its | applications in engineering | ng technology | | COURS | SE SPECIFICATION: THEORE | TICAL AND PRACTICA | AL CONTEN | T | | | | General | Objective 1.0: Know different dra | wing instruments, equipm | ent and materi | als | | | | THEOR | ETICAL | | | PRACTICAL | | | | Week | Specific Learning | Teachers Activities | Resources | Specific Learning | Teachers Activities | Resources | | | Outcomes | | | Outcomes | | | | | 1.1 List different types of | Explain different types | Marker | | Guide students to: | Complete set | | | drawing instruments, | of drawing instruments, | Whiteboard | Identify the | Identify the different | of drawing | | | equipment and materials. | equipment and materials | Journals | different types of | types of drawing | instruments | | 1-2 | | | Textbooks | drawing | instruments, equipmen | | | | 1.2 Outline the uses of the | Explain the uses of the | Computer | instruments, | and materials. | Drawing | | | various instruments, | various instruments, | Internet | equipment and | | Boards | | | equipment and materials | equipment and | Projector | materials. | | | | | | materials | | | Observe the | | | | 1.3 State the precautions | | | Observe the | precautions necessary | | | | necessary to preserve items | Explain the precautions | | precautions | to preserve the items | | | | 1.1 above. | necessary to preserve | | necessary to | identified above. | | | | | items 1.1 above | | preserve the items | | | | | | | | identified above. | | | | | | | | | Use each of the items | | Use each of the items mentioned mentioned above. | | | | | above. | | | |--------|--------------------------------------|----------------------------|------------|---------------------|------------------------|--------------| | | | | | | Maintain the various | | | | | | | Maintain the | instruments and | | | | | | | various | equipment. | | | | | | | instruments and | | | | | | | | equipment. | | | | Genera | al Objective 2.0: Understand the ess | entials of graphical comm | unications | | | 1 | | | 2.1 Explain different types of | Explain different types | Marker | | Guide students to: | Complete set | | 3-4 | graphic Communications. | of graphic | Whiteboard | Illustrate the | Illustrate the various | of drawing | | | | Communications. | Journals | various | conventions present | instruments | | | 2.2 Describe various conventions | | Textbooks | conventions | in graphical | | | | present in graphical | Explain various | Computer | present in | productions of | Drawing | | | productions of construction | conventions present in | Internet | graphical | construction lines, | Boards | | | lines, finished lines, hidden | graphical productions of | Projector | productions of | finished lines, hidden | | | | and overhead details | construction lines, | - | construction lines, | and overhead details | | | | projections, centre lines, break | finished lines, hidden | | finished lines, | projections, centre | | | | lines, dimensioning of plane, | and overhead details | | hidden and | lines, break lines, | | | | elevation and sections of | projections, centre lines, | | overhead details | dimensioning of | | | | objects. | break lines, | | projections, centre | plane, elevation and | | | | - | dimensioning of plane, | | lines, break lines, | sections of objects. | | | | | elevation and sections of | | dimensioning of | - | | | | 2.3 State the various standards of | objects. | | plane, elevation | | | | | drawing sheets. | | | and sections of | | | | | | Explain the various | | objects. | Prepare drawing | | | | | standards of drawing | | | sheets with the | | | | 2.4 Explain how to print letters | sheets. | | Prepare drawing | following: | | | | and figures of various forms | | | sheets with the | • Margins | | | | and characters. | Explain how to print | | following: | Title block etc. | | | | | | | | | | | | 2.5 Describe conventional signs, | letters and figures of | | Margins | | | |--------|--------------------------------------|-----------------------------------|------------------|-----------------------------|------------------------------|--------------| | | symbols and appropriate | various forms and | | Title block | State the various | | | | lettering characters | characters. | | etc. | standards of drawing sheets. | | | | | Explain conventional | | State the various | | | | | | signs, symbols and | | standards of | Print letters and | | | | | appropriate lettering | | drawing sheets. | figures of various | | | | | characters | | | forms and characters. | | | | | | | Print letters and | | | | | | | | figures of various | | | | | | | | forms and | Illustrate | | | | | | | characters. | conventional signs, | | | | | | | | symbols and | | | | | | | Illustrate | appropriate lettering | | | | | | | conventional signs, | characters. | | | | | | | symbols and | | | | | | | | appropriate | | | | | | | | lettering | | | | | | | | characters. | | | | lenera | Objective 3.0: Know the construction | ction of simple geometrica | l figures and se | ections | | | | | 3.1 Explain the purpose of | Explain the purpose of | Marker | | Guide students to: | Complete set | | | geometrical construction in | geometrical construction | | Construct parallel | Construct parallel | of drawing | | | drawing parallel lines. | in drawing parallel lines. | Journals | and perpendicular | and perpendicular | instruments | | | | | Textbooks | lines. | lines. | | | | 3.2 Define geometric figures: | Explain geometric | Computer | | | Drawing | | 5-7 | • Circle | figures | Internet | Construct and | | Boards | | | Quadrilateral | • Circle | Projector | bisect lines, angles | Construct and bisect | | | | Polygon, etc. | Quadrilateral | | and areas. | lines, angles and | | | | | | 40 | | | | | 3.3 Explain the properties of | Polygon, etc. | | areas. | |--|---|---|---| | geometric figures, e.g.: | | Divide a straight | | | • Sides | Explain the properties of | line into given | | | Diagonal | geometric figures, e.g.: | number of equal | Divide a straight line | | • Radius | • Sides | parts. | into given number of | | • Diameter | Diagonal | | equal parts. | | Normal | • Radius |
Identify polygons | | | • Tangent | • Diameter | (regular or | Identify polygons | | Circumference etc. | Normal | irregular). | (regular or irregular). | | 3.4 Explain the steps in construction of simple geometrical figures and sections | Tangent Circumference etc. Explain the steps in construction of simple geometrical figures and sections | Construct regular polygons with N sides in a given circle, given: • Distance across flats | Construct regular polygons with N sides in a given circle, given: • Distance across | | 3.4 Define an ellipse. | | Distance | flats | | 3.5 Explain the following drafting techniques: Projection method Measurement method Transposition method. | Explain an ellipse. Explain the following drafting techniques: • Projection method • Measurement method • Transposition method. | across corners. Carryout simple geometrical constructions on circles e.g.: • Diameter of a circle of a given circumferenc | Distance across corners. Carryout simple geometrical constructions on circles e.g.: Diameter of a circle of a circle of a given circumference. The | | e. circumference | | |----------------------------------|--| | • The to a circle of a | | | circumferenc given diameter | | | e to a circle • A circle to pass | | | of a given through 3 points | | | diameter • A circle to pass | | | • A circle to through 2 points | | | pass through and touch a | | | 3 points given line | | | • A circle to • A circle to | | | pass through touch a given | | | 2 points and smaller circle | | | touch a given and a given line | | | line • Tangents to | | | A circle to circles at | | | touch a given various points | | | smaller circle • An arc of | | | and a given radius tangent | | | line to two lines at | | | • Tangents to an angle to | | | circles at less than and | | | various more than 90 | | | points • An arc externally | | | An arc of tangent to two | | | radius circles: | | | tangent to inscribing and | | | two lines at circumscribing | | | an angle to circles | | | | | | | less than and | | | |--------|--------------------------------------|-----------------------------|----------------|--------------------------------|------------------------------------|--------------| | | | | | more than 90 | | | | | | | | • An arc | | | | | | | | externally | | | | | | | | tangent to two | | | | | | | | circles: | | | | | | | | inscribing and | Construct ellipse by | | | | | | | circumscribing | using: | | | | | | | circles | Trammel method | | | | | | | | Concentric | | | | | | | Construct ellipse | circle method. | | | | | | | by using: | | | | | | | | Trammel | | | | | | | | method | Construct plane | | | | | | | Concentric | scales and diagonal | | | | | | | circle | scales, using | | | | | | | method. | appropriate | | | | | | | | instruments. | | | | | | | Construct plane | | | | | | | | scales and diagonal | | | | | | | | scales, using | | | | | | | | appropriate | | | | | | | | instruments. | | | | Genera | al Objective 4.0: Know the construct | tion of isometric and oblic | que drawing an | d projection | | | | 8-10 | 4.1 Explain isometric and oblique | _ | Marker | | Guide students to: | Complete set | | | projections. | oblique projections | Whiteboard | | | of drawing | | | | | Journals | Draw a square in | Draw a square in | instruments | | | 4.2 Explain steps in construction | Explain steps in | Textbooks | isometric and | isometric and oblique | | | | | | 43 | | | | | | <i>(D)</i> | | .5 | | | | | | W. | of isometric and oblique | construction of | Computer | oblique forms. | forms. | Drawing | |--------------------------|------------------------|-----------|---------------------|------------------------------------|---------| | drawing and projection | isometric and oblique | Internet | | | Boards | | | drawing and projection | Projector | Draw a circle in | Draw a circle in | | | | | | Isometric and | Isometric and oblique | | | | | | oblique forms. | forms. | | | | | | Draw an ellipse in | Draw an ellipse in | | | | | | Isometric and | Isometric and oblique | | | | | | oblique forms. | forms. | | | | | | Draw a polygon | Draw a polygon with | | | | | | with a minimum of | a minimum of eight | | | | | | eight sides in | sides in Isometric | | | | | | Isometric and | and oblique forms. | | | | | | oblique forms. | | | | | | | | Dimension holes, | | | | | | Dimension holes, | circles, arcs and | | | | | | circles, arcs and | angles correctly on | | | | | | angles correctly on | isometric and oblique | | | | | | isometric and | projections. | | | | | | oblique | | | | | | | projections. | Use appropriate convention symbols | | | | | | Use appropriate | and abbreviations. | | | | | | convention | | | | | | | symbols and | | | | | | | abbreviations. | | | | WATIL | | | | | | | ~ | | 44 | 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | |---------|---------------------------------------|---|------------|----------------------|-----------------------|--------------| | Genera | l Objective 5.0: Understand princip | | | T | | T | | | 5.1 Explain the principle of | Explain the principle of | | | Guide students to: | Complete set | | | orthographic projection. | orthographic | Whiteboard | Project views of | Project views of | of drawing | | | | projection. | Journals | three-dimensional | three-dimensional | instruments | | | 5.2 Illustrate the principle planes | | Textbooks | objects on to the | objects on to the | | | | of projection: | Explain the principle | Computer | basic planes of | basic planes of | Drawing | | 11-13 | Vertical plane | planes of projection: | Internet | projection in both | projection in both | Boards | | | Horizontal plane. | Vertical plane | Projector | first and third | first and third angle | | | | | Horizontal plane. | | angle to obtain: | to obtain: | | | | 5.3 Explain why the first and third | | | • The front view | • The front view | | | | angles are used and the second | Explain why the first | | or elevation | or elevation | | | | and fourth angles not used. | and third angles are | | • The top view | • The top view or | | | | | used and the second | | or plan. | plan. | | | | | and fourth angles not | | • The side view | • The side view | | | | | used. | | | | | | Genera | l Objective 6.0: Understand the inte | ersections of regular solids | | | | • | | | 6.1 Explain interpretation or | Explain interpretation or | Marker | Draw the lines of | Guide students to: | Complete set | | 12 - 15 | intersections of solids | intersections of solids. | Whiteboard | intersections of the | Draw the lines of | of drawing | | | | | Journals | following regular | intersections of the | instruments | | | 6.2 Explain the intersections of | Explain the | Textbooks | solids and planes | following regular | | | | regular solids | intersections of regular | Computer | in both first and | solids and planes in | Drawing | | | | solids | Internet | third angles. | both first and third | Boards | | | | | Projector | Two square- | angles. | | | | | | | prisms | Two square- | | | | | | | meeting at | prisms meeting | | | | | | | right angles. | at right angles. | | | | | | | • Two | Two dissimilar | | | | | | | | | | | | square prisms meeting at an | |-----------|-----------------------------| | | meeting at an angle. | | | angle. • Two dissimilar | | | • Two square prisms | | | dissimilar meeting to an | | | square prisms angle | | | meeting to an • A hexagonal | | | angle prism meeting a | | | A hexagonal square prism at | | | prism right angles. | | | meeting a • Two dissimilar | | | square prism cylinders | | | at right meeting at an | | | angles. angle. | | | Two Two dissimilar | | | dissimilar cylinders | | | cylinders meeting at right | | | meeting at an angle, their | | | angle. centres not being | | | • Two in the same | | | dissimilar vertical plane | | | cylinders | | | meeting at | | | right angle, | | | their centres | | | not being in | | | the same | | | vertical plane | | ** | 46 | | WALL | | | | | | | | | | | # Basic Workshop Practice and Technology | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | |--|----------------------|------------------|--|--| | COURSE TITLE: Basic Workshop Practice and | COURSE CODE: MEC 113 | CONTACT HOURS: 4 | | | | Technology | CREDIT UNITS: 3 | THEORETICAL: 1 | | | | YEAR: SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 3 | | | **GOAL:** This course is designed to acquaint students with knowledge and skills of workshop safety practices as well as the use and care of basic tools and equipment in workshop operations GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Know General Factory Acts, Safety Regulations and safety precautions - 2.0 Understand safety inspection - 3.0 Use basic marking out, metal removal and filing tools - 4.0 Use basic measuring and testing equipment - 5.0 Perform drilling operations - 6.0 Perform various metal joining operations - 7.0 Perform the various wood working tools and operations - 8.0 Perform reaming operations - 9.0 Perform tapping operations - 10.0 Perform basic operations on plastics | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | |--|----------------------|------------------|--|--|--| | COURSE TITLE: Basic Workshop Technology and | COURSE CODE: MEC 113 | CONTACT HOURS: 4 | | | | | Practice | CREDIT UNITS: 3 | THEORETICAL: 1 |
 | | | YEAR: SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 3 | | | | | COURSE SPECIFICATION: THEORETICAL AND PRACE | TICAL CONTENT | | | | | GOAL: This course is designed to acquaint students with knowledge and skills of workshop safety practices as well as the use and care of basic tools and equipment in workshop operations General Objective 1.0: Know General factory acts, safety Regulations and safety precautions | THEOF | RETICAL | · · · · · | . () | PRACTICAL | | | |-------|-------------------------------|---------------------------|---------------|---------------------|------------------------|----------------| | Week | Specific Learning Outcome | Teachers' Activities | Resources | Specific Learning | Teachers' | Resources | | | | | | Outcome | Activities | | | | 1.1 Explain Nigeria Factories | Explain Nigeria Factories | Lecture notes | | Guide students to: | Videos of safe | | | Acts and Safety | Acts and Safety | Textbooks | Demonstrate all | Demonstrate all safety | and unsafe | | | Regulations | Regulations | Whiteboard | safety rules and | rules and regulations | acts | | | | | Marker | regulations in the | in the workshop | | | | | Explain safety Rules and | Computer | workshop | | Safety charts | | | 1.2 Explain safety Rules and | Regulations. | Projector | | Use safety equipment | | | | Regulations. | | Internet | Use safety | and Personal | Personal | | | | Explain standard | | equipment and | Protection Equipment | Protective | | 1-2 | 1.3 Explain standard | housekeeping and its | | Personal Protection | | equipment | | | housekeeping and its | procedures | | Equipment | Follow safety | | | | procedures | | | | procedures and | | | | | State safety precautions | | Follow safety | precautionary | | | | 1.4 State safety precautions | | | procedures and | measures | | | | | Provide list of safety | | precautionary | | | | | | | | | \sim | <u>.</u> | |--------|---------------------------------------|---------------------------------------|---------------|-------------------------------|-----------------------|----------------| | | 1.5 Provide list of safety | precautions in the | | measures | | | | | precautions in the | workshop | | | ·CX | | | | workshop | | | | | | | | | | | | | | | | | Explain some unsafe acts | | | | | | | | in the workshop. | | | | | | | 1.6 Explain some unsafe acts | | | | | | | | in the workshop. | List out protective wears | | | | | | | | in the workshop. | | | | | | | 1.7 List out protective wears | | | | | | | | in the workshop. | Explain Personal | | | | | | | | Protective Equipment | | • | | | | | 1.8 Explain Personal | (PPE) such as: | | * | | | | | Protective Equipment | | | | | | | | (PPE) such as: | • Safety boots | | | | | | | Safety boots | • Goggles | } | | | | | | Goggles | • Coverall | | | | | | | • Coverall | Hand gloves, etc. | | | | | | | Hand gloves, etc. | 0, | | | | | | Genera | al Objective 2.0: Understand safe | ty inspection | 1 | l | l | 1 | | | 2.1 Define safety inspections | Explain safety | Lecture notes | | Guide students to: | Videos of safe | | | | inspections | Textbooks | Inspect the following | Inspect the following | and unsafe | | | 2.2 Describe different types of | | Whiteboard | equipment in the | equipment in the | acts | | | safety inspections | Explain different types | Marker | workshops: | workshops: | | | | | of safety inspections | Computer | • Air receivers | Air receivers | Safety charts | | | 2.3 Explain the importance of | | Projector | Ropes and | • Ropes and | | | | safety inspection in the | Explain the importance | Internet | Chains | Chains | Personal | | 3 | workshop | of safety inspection in | | | | Protective | | | 2.4 State frequency of safety inspections and personnel to be involved 2.5 Explain how to carry out safety inspections on the following equipment: Air receivers Ropes and Chains Pulley blocks Forklift carriage Mobile and overhead cranes Derricks and gantries 2.6 Emphasize the use of relevant personal protective equipment while on inspection | the workshop Explain frequency of safety inspections and personnel to be involved Explain how to carry out safety inspections on the following equipment: • Air receivers • Ropes and Chains • Pulley blocks • Forklift carriage • Mobile and overhead • Derricks and gantries Explain the use of relevant personal | | Pulley blocks Forklift carriage Mobile and overhead cranes Derricks and gantries | Pulley blocks Forklift carriage Mobile and overhead cranes Derricks and gantries | equipment | |-------|--|---|---------------|---|---|--------------| | | , | protective equipment while on inspection | | | | | | Gener | ral Objective 3.0: Use basic marki | - | iling tools | | l | <u> </u> | | Gener | 3.1 Describe types of | Explain types of | Lecture notes | | Guide students to | Work bench | | | | | | Differentiate | | WOIK DELICIT | | | marking-out tools and | marking-out tools and | Textbooks | Differentiate | Differentiate between: | D 1 . | | 4-5 | how to use it on the bench | how to use it on the | Whiteboard | between: | Hand tools and | Bench vice | | | | | | | | | | | | 1 | | | | |--|---------------------------------|-----------|---------------------------------|------------------------------|----------------| | correctly | bench correctly | Marker | Hand tools | machine tools | | | | | Computer | and machine | Bench tools | Hammers | | 3.2 Explain the need for care | • | Projector | tools | and machine | | | in the use of the tools | in the use of the tools | Internet | Bench tools | cutting tools | Set of drills | | | | | and machine | | | | 3.3 Explain the effect of not | Explain the effect of not | | cutting tools | Identify marking out | Steel rule | | using this tools properly | using this tools properly | | | tools used on the | | | and keeping them in good | and keeping them in | | Identify marking out | bench typical | Scribers | | working condition | good working condition | | tools used on the | workshop practical | | | | | | ◆bench typical | exercises. | Scribing | | 3.4 Explain how to maintain: | Explain how to maintain: | | workshop practical | | blocks | | • Files | • Files | | exercises. | Use marking-out tools | | | Dividers | Dividers | | | on the bench correctly | | | • Saws | Saws | | Use marking-out | Identify this bench | Inside and | | Gauges | • Gauges | | tools on the bench | cutting tools | outside | | Tri squares | Tri squares | | correctly | | calipers | | Bevel edge square etc. | Bevel edge | | Identify this bench | Produce simple | | | | square etc. | | cutting tools | objects using | Surface plate | | 3.5 Explain the role of the | Explain the role of the | | | bench/hand tools such | | | following tools in the | following tools in the | | Produce simple | as: | Dividers | | mechanical workshop: | mechanical workshop: | | objects using | • Files | Centre punches | | • Scribers | Scribers | | bench/hand tools | • Chisels | | | • Inside and outside | Inside and | | such as: | Scrapers | Files | | caliper | outside caliper | | • Files | • Saws etc. | | | • Centre | Centre | | Chisels | | Scrapers | | • Files | • Files | | Scrapers | Maintain files, | | | • Scrapers | Scrapers | | • Saws etc. | dividers, saws, gauges | | | | • | | | try squares, bevel | | | | • File card | • File card | | Maintain files, ed | ge square etc. | | |-------|-----------------------------------|-----------------------------|---------------|----------------------------------|---------------------------------|----------------| | | | | | dividers, saws, | | | | | | | | gauges try squares, W | rite process sheet or | | | | | | | bevel edge square op | eration layout for | | | | | | | etc. the | e component to be | | | | | | | pr | oduced. | | | | | | | Write process sheet | | | | | | | | or operation layout | | | | | | | | for the component to | | | | | | | | be produced. | | | | Gener | al Objective 4.0: Use basic measu | uring and testing equipment | | | | | | | 4.1 Explain the methods of | Explain the methods of | Lecture notes | | Guide students to: | Micrometers- | | | using the measuring | using the measuring | Textbooks | Identify the differences | Identify the | external & | | | equipment | equipment | Whiteboard' | and similarities between | differences and | internal | | | | | Marker▶ | measuring and testing | similarities between | | | | | Explain the advantage of | Computer | equipment in
mechanical | measuring and | Vernier | | | 4.2 Explain the advantage of | using the equipment | Projector | workshop with regards | testing equipment in | calipers | | 6-7 | using the equipment | properly and keeping | Internet | to: | mechanical | | | | properly and keeping them | them in good working | | Principle of | workshop with | Steel rule | | | in good working condition | condition | | operation | regards to: | | | | | | | Construction | • Principle of | | | | | Explain: | | • Use | operation | Test | | | 4.3 Explain: | The principle of | | | Constructio | mandrel/test | | | • The principle of | operation and | | | n | bar | | | operation and | construction of a | | | • Use | | | | construction of a | micrometer screw | | | | 070 x 300 mm | | | micrometer screw | gauge | | Perform simple measuring | Perform simple | long | | | gauge | • The least count of | | exercises using steel rules | , measuring | dial indicator | | • The least count of | micrometer | | vernier calipers and | exercises using | with stand | |---|--|-------|--|------------------------------|---------------| | micrometer | Principle of | | micrometers. | steel rules, | spirit level | | Principle of operation | operation and | | | vernier calipers | surface | | and construction of a | construction of a | | | and micrometers. | | | Vernier caliper and the | Vernier caliper | | | | Roughness | | least count. | and the least | | Use dial indicators to: | Use dial | tester | | • The types of | count. | | Set up jobs on the | indicators to: | (portable | | micrometers | The types of | | lathe | • Set up | type) | | • The types of Vernier | micrometers | | Roundness testing | jobs on | | | calipers | • The types of | | etc. | the lathe | SURF TEST, | | Accuracy of a steel | Vernier calipers | | | Roundnes | | | rule | Accuracy of a | . () | | s testing | 90° angle | | | steel rule | | Carry out exercises | etc. | gauge | | | | | involving flatness, | | straight edge | | | Evalsia the animainte an | | squareness, straightness | Carry out exercises | | | | Explain the principle and construction of a dial | | and surface finish test. | involving flatness, | Vernier | | 4.2 E1-in 4h - main -in 1 1 | indicator, their types and | | | squareness, | protractor. | | 4. 2 Explain the principle and construction of a dial | their accuracy | | | straightness and | | | | men accuracy | | Perform taper | surface finish test. | | | indicator, their types and | Differentiate between the | | measurement on jobs | | | | their accuracy | use of vernier protractor | | using vernier protractor | Perform taper | | | 4.3 Differentiate between the | and sine bar and their | | and sine bars. | measurement on | | | use of vernier protractor | limitations. | | | jobs using vernier | | | and sine bar and their | | | | protractor and | | | limitations. | | | | sine bars. | | | miniauons. | | | Inspect jobs using simple | | | | | | | comparators | Inspect jobs using | | | | | | | simple comparators | | | Genera | d Objective 5.0: Perform drilling | operations | | | | | |--------|---|-------------------------------------|---------------|-----------------------------|--------------------|-----------------------------| | | 5.1 Explain the nomenclature | Explain the | Lecture notes | | Guide students to: | Radial drilling | | | of a twist drill | nomenclature of a twist | Textbooks | Operate different types of | Operate different | machine | | | | drill | Whiteboard | drilling machine | types of drilling | | | | 5.2 Explain types of drilling | | Marker | | machine | Bench drilling | | | machine | Explain types of drilling | Computer | | | machine | | | Pillar | machine | Projector | Carry out drilling, | Carry out drilling | | | | Column | • Pillar | Internet | operations such as: | operations such | Pillar drilling | | | • Multi spindle etc. | • Column | | Counter-boring | as: | machine | | | | • Multi spindle etc. | | Counter-sinking | • Counter- | | | | 5.3 Explain the type of drilling | | | | boring | Column type | | | operation that can be | Explain the type of | | | • Counter- | drilling | | | carried out on the | drilling operation that can | | | sinking | machine | | | following: | be carried out on the | | Grind drill bits accurately | | | | 8-9 | Radial drilling | following: | | | Grind drill bits | Counter | | | machine | Radial drilling | | | accurately | boring drills | | | Bench drilling machine | machine / | Ť | Select correct drilling | | G . | | | Pillar drilling machine | Bench drilling | | speeds | Select correct | Counter | | | Column type drilling | machine | | | drilling speeds | sinking drills | | | machine | Pillar drilling | | | | C 4 1 11 | | | | machine | | Indicate the | Indicate the | Centre drills | | | | Column type | | nomenclature of a twist | nomenclature of a | D - 1 4 - 1 | | | | drilling machine | | drill: | twist drill: | Pedestal | | | | | | Clearance angle | • Clearance | grinding | | | | Explain the differences | | Rake angle | angle | machine attached with | | | 5.4 Differentiate between: | between: | | • Point angle etc. | • Rake | attached with a twist drill | | | Drilling and boring | Drilling and boring | | | angle | | | | | | | | • Point | grinding | | | | T | 1 | | | , | |--------|---|---|---------------|---------------------------|--------------------|----------------| | | operations | operations | | | angle etc. | attachment | | | Radial drilling and | Radial drilling and | | | | | | | sensitive drilling | sensitive drilling | | Calculate the speeds of | Calculate the | | | | machine | machine | | various sizes of drills | speeds of various | | | | | Explain the formulae for | | using appropriate | sizes of drills | | | | 5.5 Explain the formulae for | calculation of speed of | | formulae. | using appropriate | | | | calculation of speed of | various sizes of drills | | | formulae. | | | | various sizes of drills | | | | | | | Genera | l Objective 6.0: Perform various | metal joining operations | | .4U | | | | | 6.1 Explain the various metal | Explain the various | Lecture notes | | Guide students to: | Various types | | | joining methods | metal joining methods | Textbooks | Identify various metal | Identify various | of Fasteners | | | | | Whiteboard | joining operations | metal joining | Brazing rods | | | 6.2 Describe the process of | Explain the process of | Marker | Ť | operations | | | | joining metals using the | joining metals using the | Computer | | | Flash gas | | | following methods: | following methods: | Projector | Fabricate metal container | Fabricate metal | lighter | | | Brazing | Brazing | Internet | by Knock-up joining | container by | | | | Threaded Fasteners | Threaded | | | Knock-up joining | Soldering flux | | | Soldering | Fasteners | | | | Stock and dies | | 10-11 | C | Soldering | | Join metals by the | Join metals by the | (set) metric | | | | QV | | grooving technique | grooving | | | | 6.3 Explain how to carry out | Explain how to carry out | | | technique | | | | soft soldering | soft soldering | | | | | | | | | | Fabricate metal container | Fabricate metal | | | | • | | | by knock-up joining | container by | | | | | | | | knock-up joining | | | | | | | | | | | | | | | Carry out soft soldering | Carry out soft | | | | NO. | | | | soldering | | | Genera | General Objective 7.0: Perform the various wood working tools and operations | | | | | | | | |--------|--|--------------------------------------|---------------|-----------------------------|--------------------|----------------|--|--| | | 7.1 Explain the applications | Explain the applications | Lecture notes | Identify the tools used for | Identify the tools | Tri Square | | | | | of the following: | of the following: | Textbooks | wood work | used for wood | | | | | | Geometric/marking | Geometric/markin | Whiteboard | | work | Divider | | | | | out tools e.g. tri | g out tools e.g. tri | Marker | | | | | | | | square, dividers and | square, dividers | Computer | Mark out and prepare | Mark out and | Gauges | | | | | gauges | and gauges | Projector | wood for various | prepare wood for | | | | | | | Planning tools | Internet | operations as described | various | Jack planes | | | | | Planning tools e.g.: | e.g.: Jack, smooth, | | in 7.2 | operations as | Smooth | | | | | Jack, smooth, spoke | spoke shaves, etc. | | | described in 7.2 | plane | | | | | shaves, etc. | • Cutting tools e.g.: | | | | | | | | | • Cutting tools e.g.: | saws, chisels, | | Carry out various | Carry out various | Panel saws | | | | | saws, chisels, | knives, boring | | woodwork operations | woodwork | | | | | 1.0 | knives, boring tools | tools | | using the tools in 7.1 -7.3 | operations using | Chisels | | | | 12 | • Impelling tools e.g.: | Impelling tools | | | the tools in 7.1 - | Knives | | | | | hammer and | e.g.: hammer and | | | 7.3 | | | | | | mallets, Pneumatic | mallets, Pneumatic | Ť | | 3.6.1.1.1.1 | Boring tools | | | | | tools | tools | | Maintain all tools and | Maintain all tools | ** | | | | | | | | machines used | and machines |
Hammers | | | | | 7.2 Describe portable electric | Explain portable electric | | T1 ('C (1) 1 | used | N 6 11 . | | | | | hand tools in wood work, | hand tools in wood | | Identify the steps and | T1 (C (1) | Mallets | | | | | e.g.: | work, e.g.: | | tools involved in making | Identify the steps | D 4 11 | | | | | Portable saw | Portable saw | | a simple machine part | and tools | Portable saw | | | | | Portable planer | Portable | | using wood as material | involved in | D | | | | | Portable drill | planer | | | making a simple | Portable | | | | | Portable sander | Portable drill | | | machine part | planer | | | | | • Jig saw. | Portable | | | using wood as | Portable drill | | | | | | | | | material | Portable drill | | | | | sander | | | | | |---|--------------------------------------|-----|------|---|----------| | 7.3 Explain the operations of | • Jig saw. | | | | Portable | | basic wood working | | | | | sander | | machines such as: | Explain the operations of | | | J | | | Surface plaining and | basic wood working | | | | Jig saw | | thickening machine:- | machines such as: | | | | | | Circular sawing | Surface plaining | | | | | | Machine | and thickening | | | | | | Mortising machine:- | machine:- | | (V). | | | | Drilling machine | Circular sawing | • | | | | | Single ended plaining | Machine | | | | | | machine | Mortising | .(3 | | | | | Band sawing machines | machine:-Drilling | | | | | | and safety precaution | machine | | | | | | in their operations | Single ended | | | | | | | plaining | | | | | | | Band sawing | | | | | | | machines and | | | | | | 7.4 Explain the need for care in | safety precaution | | | | | | the use of the tools and | in their | | | | | | machines listed in $7.1 - 7.3$ | operations | | | | | | | _()/ | | | | | | | Explain the need for care | | | | | | | in the use of the tools and | | | | | | | machines listed in 7.1 – | | | | | | 7.3 | 7.3 | | | | | | | | | | | | | | Explain the methods of | | | | | | | 1 | | 1 | T | | | |-------|----------------------------------|----------------------------|---------------|---------------------------|--------------------|-----------------| | | 7.6 State the safety precaution | maintenance of the tools | | | | | | | on the tools and machines | and machines listed in | | | | | | | listed in $7.1 - 7.3$ | 7.1 - 7.3 | | | O ' | | | | | | | | | | | | | Explain the safety | | | | | | | | precaution on the tools | | | | | | | | and machines listed in 7.1 | | | | | | | | - 7.3 | | | | | | Gener | al Objective 8.0: Perform reamin | g operations | 1 | .40 | | | | | 8.1 Describe reaming | Explain reaming | Lecture notes | | Guide students to: | Hand reamers | | | Operations | Operations | Textbooks | Carry out reaming | Carry out reaming | | | | | | Whiteboard | operations: | operations: | Machine | | | 8.2 Explain how to carry out | Explain how to carry out | Marker | • on the bench | • on the | reamers | | | reaming operations | reaming operations | Computer | • on drilling/lathe | bench | | | | 8.3 Explain the need for care in | Explain the need for care | Projector | | • on | Tap wrench | | | the use of the tools and | in the use of the tools | Internet | | drilling/lath | _ | | | machines for reaming | and machines for | | | e | Jacobs chuck | | | operations | reaming operations | | Select correct speeds for | | and key | | 13 | | | | reaming small and large | Select correct | Reduction | | | 8.4 Explain the methods of | Explain the methods of | | holes | speeds for | sleeves | | | maintenance of the tools | maintenance of the tools | | 110100 | reaming small | | | | and machines for reaming | and machines for | | | and large holes | Radial drilling | | | operations | reaming operations | | | and large notes | machine | | | | | | | | | | | 8.5 Explain the conditions for | Explain the conditions | | | | Reamers | | | using the following tools in | | | | | | | | reaming operations: | tools in reaming | | | | | | | Hand reamers | operations: | | | | | | | Machine reamers | Hand reamers | | | | | | | | |------|---|-------------------------------------|---------------|---------------------------------|------------------------------|-----------------|--|--|--| | | Tap wrench | Machine reamers | | | | | | | | | | Radial drilling | Tap wrench | | | \mathcal{O}' | | | | | | | machine | Radial drilling | | |) | | | | | | | | machine | | | | | | | | | Gene | General Objective 9.0: Perform tapping operations | | | | | | | | | | | 9.1 Explain tapping and the | Explain tapping and the | Lecture notes | | Guide students to: | Taps and | | | | | | purpose of tapping | purpose of tapping | Textbooks | Select correct tapping | Select correct | wrenches | | | | | | operation. | operation. | Whiteboard | drill size | tapping drill size | | | | | | | | | Marker | | | Drill chuck | | | | | | | Explain the need for care | Computer | Select correct taps | Select correct | and key | | | | | | 9.2 Explain the need for care in | in the use of the tools and | Projector | | taps | | | | | | | the use of the tools and | machines for tapping | Internet | Carry out tapping | | Lathe | | | | | | machines for tapping | operations | | operation: | Carry out tapping | machine | | | | | | operations | | | On the work | operation: | medium size | | | | | | | Explain how to calculate | | bench | • On the | | | | | | 14 | 9.3 Explain how to calculate | tapping drill sizes | | On drilling | work | Pillar drilling | | | | | | tapping drill sizes | | | machine | bench | machine | | | | | | | Explain the | | On lathe | • On | | | | | | | 9.4 Explain the characteristics | characteristics of threaded | | | drilling | | | | | | | of threaded fasteners: | fasteners: | | | machine | | | | | | | • Pitch | Pitch | | | On lathe | | | | | | | No. of starts | No. of starts | | | | | | | | | | Profile of thread | Profile of | | Calculate tapping drill | Calculate tapping | | | | | | | Direction of thread | thread | | sizes | drill sizes | | | | | | | | Direction of | | | | | | | | | | | thread | | | | | | | | | | | _ | 1 | | , | |----------------------------------|---|--|---|--|--| | 9.5 State the correct tapping | | | | | | | drill size. | Explain the correct | | | | | | | tapping drill size. | | | ()' | | | | | | | | | | - | Explain how to correct | | | | | | | * | | | | | | al Objective 10.0: Perform basic | 1 | | | | | | | * * | Lecture notes | | Guide students to: | Set of drill | | 1 21 | | | Identify various types of | | Set of diffi | | | | | | 1 | Waadtamina | | | | • | plastic groups | | Wood turning | | Thermo-plastic | | | | groups | lathe | | | setting | * - | | | | | 10.2 Explain characteristics of | • Thermo- | | _ | _ | HSS cutting | | each type of plastic. | plastic | Internet | characteristics of each | characteristics of | tools | | | | | type of plastic. | each type of | |
| 10.3 Explain the three | Explain characteristics of | | | plastic. | Evostic glue | | processes of joining | each type of plastic. | | | | | | | | | | Use conventional | Thermo- | | r | Explain the three | | Use conventional metal | metal cutting | setting and | | 10.4 Differentiate between | | | cutting tools to perform | | thermo-plastic | | | | | | * | 1 | | | plastics together | | operations on plastics. | * | | | 1 | (F1-i4) - 1'CC | | | plastics. | | | | | | | Communication | | | | | | | | | | | * | | | | | | tools to perform operations | | | operations using plastics | plastics | | | on plastics. | Explain how to use | | | | | | AO, | conventional metal | | | | | | | 9.6 Explain how to correct Taps al Objective 10.0: Perform basic 10.1 Explain various types of plastic groups such as: Thermo-setting Thermo-plastic 10.2 Explain characteristics of each type of plastic. 10.3 Explain the three processes of joining plastics together 10.4 Differentiate between thermo-setting and thermo-plastics. 10.5 Describe how to use conventional metal cutting tools to perform operations' | drill size. 9.6 Explain how to correct Taps Explain how to correct Taps Explain how to correct Taps al Objective 10.0: Perform basic operations on plastics 10.1 Explain various types of plastic groups such as: • Thermo-setting • Thermo-plastic 10.2 Explain characteristics of each type of plastic. 10.3 Explain the three processes of joining plastics together 10.4 Differentiate between thermo-setting and thermo-plastics. 10.5 Describe how to use conventional metal cutting tools to perform operations on plastics. Explain the correct tapping drill size. Explain how to correct Taps Explain various types of plastic groups such as: • Thermo-setting • Thermo-setting • Thermo-setting • Explain characteristics of each type of plastic. Explain the three processes of joining plastics together Explain the differences between thermo-setting and thermo-plastics. Explain how to correct tapping drill size. | drill size. drill size. Explain the correct tapping drill size. 9.6 Explain how to correct Taps Explain how to correct Taps al Objective 10.0: Perform basic operations on plastics 10.1 Explain various types of plastic groups such as: Thermo-setting Thermo-plastic Thermo-plastic 10.2 Explain characteristics of each type of plastic. 10.3 Explain the three processes of joining plastics together 10.4 Differentiate between thermo-setting and thermo-plastics. 10.5 Describe how to use conventional metal cutting tools to perform operations on plastics. Explain the correct tapping drill size. Explain how to correct Taps Explain various types of plastics Explain various types of plastic groups such as: Textbooks Whiteboard Marker Computer Projector Internet Explain the three processes of joining plastics together Explain the three processes of joining plastics together Explain the differences between thermo-setting and thermo-plastics. Explain how to use Explain the correct tapping drill size. | drill size. Explain the correct tapping drill size. | drill size. Explain the correct tapping drill size. | | | operations on plastics. | | | |-------------------------|-----------------------------|------|----------| | tools for operation on | | | | | thermo-setting and | Explain the result of | |) | | thermo-setting plastic. | using conventional metal | | | | | cutting tools for operation | | | | | on thermo-setting and | | | | | thermo-setting plastic. | | | | | | .10' | | | EVALUATION | | 197 | | | | | | | | CA: 60% | | | | | EXAMINATION: 40% | DO. | NO" | | | | | | | 61 | | | | | 01 | | | | | | | | WALLO | | | | | | | | | #### **Electrical Drawings** | PROGRAMME: NATIONAL DIPLOMA IN | ELECTRICAL AND ELECTRONICS | ENGINEERING TECHNOLOGY | |--|----------------------------|------------------------| | COURSE TITLE: Electrical Drawings | CODE: EEC 111 | CONTACT HOURS: 4 | | | CREDIT UNITS: 3 | THEORETICAL: 1 | | YEAR: I SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 3 | **GOAL:** This course is designed to acquaint student with the knowledge and skills to draw and interpret electrical and electronics engineering drawings. GENERAL OBJECTIVES: On completion of this course, the student should be able to - 1.0 Understand symbols of electrical and electronic components - 2.0 Know how to read and interpret Electrical and Electronic drawings. - 3.0 Know how to draw diagrams for electrical and electronic circuits using standard symbols. - 4.0 Understand how to draw diagrams using dedicated Computer Aided Design (CAD) software. DDOCD AMME, NATIONAL DIDLOMA IN ELECTRICAL AND ELECTRONICS ENCINCEDING | PROGRAMME: NATIONAL DIPLOMA IN EI | LECTRICAL AND ELECTRONICS ENGIN | IEERING TECHNOLOGY | |--|---------------------------------|--------------------| | COURSE TITLE: Electrical Drawings | CODE: EEC 111 | CONTACT HOURS: 4 | | COURSE TITLE: Electrical Drawings | CREDIT UNITS: 3 | THEORETICAL: 1 | | YEAR: I SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 3 | | COURSE SPECIFICATION: THEORETICA | L AND PRACTICAL CONTENT | | **GOAL:** This course is designed to acquaint student with the knowledge and skills to draw and interpret electrical and electronics engineering drawings. ### GENERAL OBJECTIVE 1.0: Understand symbols of electrical and electronics components | GEIVEI | THE OBJECTIVE 1.0. ORGC | istana symbols of electrical a | na ciccironnes e | 1 | | | |--------|-------------------------------------|-------------------------------------|------------------|-------------------------|--------------------|-----------------| | THEO | RETICAL | | | PRACTICAL | | | | Week | Specific Learning | Teachers' Activities | Resources | Specific Learning | Teachers' | Resources | | | Outcome | | | Outcome | Activities | | | 1-2 | 1.1 Define electrical | Explain electrical | Textbooks | | Guide students | Different | | | symbols: | symbols: | Journals | | to: | symbols | | | Machines | Machines | Whiteboard | Identify electrical and | | standards | | | Wiring diagrams | Wiring diagrams | Marker | electronic symbols | Identify | | | | with codes | with codes | Computer | | electrical and | Videoclips | | | • Switch gear, fuses, | Switch gear | Projector | | electronic | | | | relays etc. | fuses, relays etc. | | Identify different | symbols | Pictorials | | | Voltage sources | Voltage sources | | standards of symbols | | | | | and current | and current | | | Identify different | Free Version | | | sources | sources | | | standards of | for students PC | | | • Transformer. | Transformer. | | | symbols | Schematic | | | | 6 | | | | software | | | 1.2 Define electronics | Explain electronics | | | | | | | symbols: | symbols: | | | | Free Version | | | Semi-conductor | Semi-conductor | | | | for students E- | | | devices. | devices. | | | | plan software | | | | 1 | · | | | 1 | |--------|-------------------------------|--------------------------------------|------------------|-----------------------|----------------|---------------| | | • Integrated chips of | Integrated chips | | | | | | | the 74 series. | of the 74 series. | | | CY | | | | • Resistors, | • Resistors, | | | | | | | Capacitors, | Capacitors, | | | | | | | Inductors | Inductors | | | | | | | | Explain types of electrical | | | | | | | 1.3 Explain types of | and electronics symbols | | | | | | | electrical and | | | | | | | | electronics symbols | Explain different standards | | | | | | | | of symbols: | | | | | | | 1.4 Explain different | • IEC | CX | | | | | | standards of symbols: | • IEEE | | | | | | | • IEC | • ANSI | | | | | | | • IEEE | • JEC | | | | | | | • ANSI | | | | | | | | • JEC | | • | | | | | Genera | al Objective 2.0: Know how to | read and interpret Electrical | and Electronic o | drawings. | • | | | 3-5 | 2.3 Explain electrical and | Explain electrical and | Textbooks | | Guide students | Templates, | | | electronic drawings | electronic drawings | Journals | Interpret Electrical, | to: | Drawing | | | | | Whiteboard | Building and | | Materials and | | | 2.4 Explain types of | Explain types of electrical | Marker | Electronic diagrams. | Read and | equipment, | | | electrical drawings: | drawings: | Computer | | interpret | Computer | | | Single Line | Single Line | Projector | Draw Symbolic | Electrical, | Systems | | | Multi Line | Multi Line | | Electrical circuits | Building and | | | | | | | | Electronic | Sample | | | 2.5 Explain types of | Explain types of electronic | | Draw Building wiring | diagrams. | electrical | | | 2.5 Explain types of | • | | • | • | <u> </u> | | | | | 64 | electronic drawings | drawings | | diagrams showing all | | drawings | |------|-----------------------------------|------------------------------|--------------------|-----------------------------|---------------------|---------------| | | 2.6 Distinguish between | | | components, wiring, | Draw Symbolic | | | | SYMBOLIC and | Explain the differences | | conduits, switch | Electrical circuits | Sample | | | COMPONENT | between SYMBOLIC and | | boxes, wall plugs, | J | electronic | | | diagrams. | COMPONENT diagrams. | | | Draw Building | drawings | | | | | | | wiring diagrams | | | | 2.7 Explain how to read | Explain how to read | | | showing all | | | | electrical and electronic | electrical and electronic | | Draw a simple | components, | | | | drawings | drawings | | electrical circuit with | wiring, conduits, | | | | | | | voltage and current | switch boxes, | | | | 2.8 Explain how to | Explain how to interpret | | source and
other | wall plugs. | | | | interpret electrical and | electrical and electronic | CX | circuit elements. | | | | | electronic drawings | drawings | | | Draw a simple | | | | | | | | electrical circuit | | | | 2.9 Explain the importance | Explain the importance of | | | with voltage and | | | | of reading and | reading and interpreting | 2 | | current source | | | | interpreting electrical | electrical and electronic | | | and other circuit | | | | and electronic drawings | drawings appropriately | | | elements. | | | | appropriately | | | | | | | GENE | RAL OBJECTIVE 3.0: Kno | w how to draw diagrams for e | electrical and ele | ectronic circuits using sta | ndard symbols | | | 6-10 | 3.1 Explain standard | Explain standard symbols | Textbooks | | Guide students | Templates | | | symbols | | Journals | Identify standard | to: | | | | | Explain simple electrical | Whiteboard | symbols | | Drawing | | | 3.2 Explain simple electrical | installation diagrams using | Marker | | Identify standard | Materials and | | | installation diagrams | standard symbols. | Computer | | symbols | equipment | | | using standard symbols. | | Projector | | | | | | 3.3 Explain electronic | Explain electronic circuits | | Perform Power | Perform Power | Computer | | | circuits using standard | using standard symbols | | experiments" from the | experiments" | Systems | | | | | 65 | | | | | | | | 05 | symbols | | symbolic diagrams to | from the | | |-----------------------|--------------------------|-------------------------|------------------|-------------| | | Explain Machine diagrams | wiring diagrams | symbolic | Sample | | 3.4 Explain Machine | | showing terminals and | diagrams to | electrical | | diagrams | Explain redline drawings | earth points and how" | wiring diagrams | drawings | | | and as-built | 2 channel | showing | | | O E Evaloin nodlino | | Oscilloscopes" should | terminals and | Sample | | 3.5 Explain redline | | be connected without | earth points and | electronic | | drawings and as-built | | shorting the circuit. | how " 2 channel | drawings | | | | | Oscilloscopes" | | | | | | should be | Sample | | | | | connected | standard | | | | CK | without shorting | symbols | | | | | the circuit. | | | | | | | Sample redl | | | | Draw a typical | Draw a typical | markings | | | | electrical installation | electrical | | | | | project using standard | installation | | | | | symbols. | project using | | | | | | standard | | | | | | symbols. | | | | | | | | | | | Draw electronic | Draw electronic | | | | | circuits using standard | circuits using | | | • | | symbols | standard symbols | | | .0 | | | | | | | | Identify machine | Identify machine | | | A()) | | diagrams | diagrams | | | | 66 | | | • | | | 66 | | | | | W. | T | | T 1 10 111 | | T | |--------|----------------------------------|-------------------------------|-------------------|---------------------------|------------------|-----------------| | | | | | Identify redline | | | | | | | | drawings | Identify redline | | | | | | | | drawings | | | | | | | | | | | | | | | Carryout redline | | | | | | | | drawings marking | Carryout redline | | | | | | | drawings marking | drawings | | | | | | | | marking | | | Genera | l Objective 4.0: Understand h | ow to draw diagrams using de | edicated Compu | ter Aided Design (CAD) | software. | | | 11–14 | 3.1 Explain CAD | Explain CAD | Textbooks | Use computer software | Guide students | Computers | | | | | Journals | to draw electrical | to: | 1 | | | 3.2 Explain how to use | Explain how to use CAD | Whiteboard | installation diagrams | Use computer | AutoCAD | | | CAD in creating | in creating electrical and | Marker | a sumuron unugrums | software to draw | 114000112 | | | electrical and electronic | electronic drawing | | | electrical | Electronic | | | | ciccionic diawing | Computer | | | | | | drawing | | Projector | | installation | Workbench | | | | Explain the common | | | diagrams | | | | 3.3 Explain the common | software used for electrical | | Draw machine | | EPlan | | | software used for | and electronic drawings: | | diagrams using | | | | | electrical and electronic | AutoCAD | | computer software | Draw machine | Circuit maker | | | drawings: | • EPlan | | | diagrams using | 2000 | | | AutoCAD | PC Schematic | | | computer | | | | • EPlan | | | Draw electronic circuit | software | PC Schematic | | | | • Circuit maker 2000, | | diagrams using | Software | 1 & Sellematic | | | PC Schematic | etc. | | | Draw electronic | C 1 - | | | • Circuit maker 2000, | | | computer software | circuit diagrams | Sample | | | etc. | | | | using computer | drawings | | | 10 | | | | software | | | | ACCECCMENT, The Date of | ral class will be awarded 60% | of the total see | The continuous casess | | zzag will talza | | | | | | | = | zzes wiii take | | | 10% of the total score, while | the remaining 30% will be for | or the end of ser | nester examination score. | | | # **Introduction to Digital Electronics** | PROGRAMME: NATIONAL DIPLOMA ELECTRICA | AL AND ELECTRONICS ENGINEE | ERING TECHNOLOGY | |---|----------------------------|------------------| | COURSE TITLE: Introduction to Digital Electronics | COURSE CODE: EEC 112 | CONTACT HOURS: 3 | | | CREDIT UNIT: 3 | THEORETICAL: 2 | | YEAR: I SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 1 | GOAL: This course is designed to equip student with the knowledge and skills of digital electronics system GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Know the basic concept of Number System - 2.0 Understand Logic Gates - 3.0 Know Logic Simplification and its Applications - 4.0 Know Multiplexers and De-Multiplexers - 5.0 Understand Latches, flip-flops, and Counters - 6.0 Understand Microcontrollers and Programming | PROG | RAMME: NATIONAL DIP | LOMA ELECTR | CICAL AN | D ELECTRONI | CS ENGINEERI | | | | |---------------------------------------|--|---|--------------|---|--------------------------------|--------------|--|---------------------------------| | COURSE TITLE: Introduction to Digital | | COURS | SE CODE: EEC | 112 | CONT | ACT HOURS: 3 | | | | Electro | nics | | CREDI | T UNIT: 3 | | THE | ORETICAL: 2 | | | YEAR | : I SEMESTER: I | | PRE-RI | EQUISITE: | | PRAC | CTICAL: 1 | | | COUR | SE SPECIFICATION: TH | EORETICAL A | ND PRACT | ΓICAL | | | | | | GOAL | : This course is designed to e | equip student with | the know | ledge and skills | of digital electron | nics syst | em | | | Genera | al Objective 1.0: Know the | basic concept of I | Number Sy | stem | | | | | | THEC | PRETICAL CONTENT | | | | PRACTICAL O | CONTE | NT | | | Week | Specific Learning Outcome | Teacher's Activ | vities | Resources | Specific Learni Outcome | ng | Teacher's
Activities | Resources | | 1-3 | 1.1 Explain analog and digital signals | Explain analog a signals | and digital | Textbooks Journals Charts | Demonstrate confrom decimal an | | Guide students to: Demonstrate conversion from | Digital Logic
Trainers | | | 1.2 Explain applications of digital and analog signals. | Explain applicat digital and analo | | Animations
Computer
Projector
Marker | hexadecimal | | decimal and
hexadecimal | DMM.
Bench Power
Supply. | | | 1.3 Explain the advantages of analog and digital signals. | Explain the adva | | Marker Board | | | | Function Generator. Breadboard. | | | 1.4 Explain binary, octal,
and hexadecimal
number system | Explain binary, of hexadecimal nur system | | | | | | Oscilloscope. | | | 1.5 Explain conversion from decimal and hexadecimal to binary | Explain conversion decimal and hex to binary and vice | adecimal | | | | | | | | _ | | | | | | |-----|---|---|--------------|-------------------------|-----------------------------|---------------| | | 1.6 Explain binary addition | | | | | | | | and subtraction | and subtraction, | | | CY | | | | 1.7 Examining the | Erralain dha | | | | | | | 1.7 Explain the addition/subtraction of | Explain the addition/subtraction of 1's | | | | | | | | | | | | | | | 1's and 2's complement | | | | <u> </u> | | | | ral Objective 2.0: Understand | T - C | Tr. 41 1 | | G :1 G(1 () | D: ', 1T : | | 4-6 | 2.1 Explain logic gate | Explain logic gate | Textbooks | Toward and the state of | Guide Students to: | Digital Logic | | | 225 1: 4 1 : | | Journals | Investigate the logical | Investigate the | Trainer. | | | 2.2 Explain the basic | Explain the basic concept | Computer | behavior of AND, OR, | logical behavior of | т | | | concept of negative and | 1 | Internet | NOT, NAND, NOR, | AND, OR, NOT, | Logic gates. | | | positive logic, | logic, | Projector | and EX-OR gates. | NAND, NOR, and | D) () (| | | 227 6 4 4 4 11 | | Marker | | EX-OR gates. | DMM. | | | 2.3 Define truth table. | Explain truth table. | Marker Board | 01 (1 NIAND) | | D 1 D | | | | | | Show the NAND gate | Demonstrate and | Bench Power | | | 0.45 | | | as a Universal Gate | show the NAND | Supply. | | | 2.4 Explain the symbols and | | \circ | | gate as a Universal
Gate | D' ' 11 ' | | | truth tables of NOT, | truth tables of NOT, AND, | | T 1.1 | Gale | Digital Logic | | | AND, OR, | OR, NAND, NOR, EXOR |) | Interpret truth tables | Interpret truth tables | Trainer. | | | NAND, NOR, EXOR | Gates | | for logic gates | for logic gates | | | | Gates | | | | for logic gates | Function | | | 255 1 1 1 14 14 15 | | | | | Generator. | | | 2.5 Describe the NAND and | | | | | D 11 1 | | | NOR as universal gates. | NOR as universal gates. | | | | Breadboard. | | | | | |
 | 0 '11 | | | 2.6 Explain interpretation | Explain interpretation truth | | | | Oscilloscope. | | | truth tables for logic | tables for logic gates | | | | | | | gates | | | | | | | | 2.7 Describe the interval | | | | | | | | 2.7 Describe the integrated | = | | | | | | | circuit logic | circuit logic | | | | | | | | | | | | | | | ~ ~ ~ ~ ~ | | 70 | | | | | | | | - | * | | | | | | | | | | _ | | | | | | | |---|---|-----------------------------|--------------|---|----------------------|---------------|--|--|--| | | 2.8 Explain the concept of | Explain the concept of | | | | | | | | | | integrated circuit Logic | integrated circuit Logic | | | | | | | | | | families. | families. | 2.9 Explain the TTL and | Explain the TTL and | | | | | | | | | | CMOS logic families | CMOS logic families | | | | | | | | | General Objective 3.0: Know Logic Simplification and its Applications | | | | | | | | | | | 7-8 | 3.1 Explain the concept of | Explain the concept of | Textbooks | | Guide the students | Digital Logic | | | | | | Boolean algebra | Boolean algebra | Journals | | to: | Trainer. | | | | | | | 5 | Computer | Verify Boolean Laws | Verify Boolean | | | | | | | 3.2 Explain the | Explain the | Internet | using the various logic | Laws using the | Logic gates. | | | | | | implementation of the | implementation of the | Projector | gates | various logic gates | 6 - 6 | | | | | | Boolean (logic) | Boolean (logic) equation | Marker | | valie as regio gares | DMM. | | | | | | equation with gates | with gates | Marker Board | Construct the truth | Construct the truth | D1/11/1. | | | | | | equation with guites | Willi gates | | table of various logic | table of various | Bench Power | | | | | | 3.3 Explain Karnaugh map | Explain Karnaugh map up | | gates and combination | logic gates and | Supply. | | | | | | up to 4 variables | to 4 variables | | circuits using logic | combination circuits | Suppiy. | | | | | | up to 1 variables | to i variables | | gates. | using logic | Function | | | | | | 3.4 Explain the simplicity | Explain the simplicity of | | gates. | gates. | Generator | | | | | | of Karnaugh map | Karnaugh map application | D' | Evaluate various | gaics. | Generator | | | | | | application in | in developing | | combinational circuits | Design, test, and | Breadboard. | | | | | | developing | combinational logic | | such as adders, | evaluate various | Dicadobard. | | | | | | combinational logic | circuits | | subtractors, | combinational | Oscilloscope. | | | | | | circuits | circuits | | subtractors, | circuits such as | Oscilloscope. | | | | | | circuits | | | Dagian and implement | | | | | | | | 2 5 Eventain that half addan | Evel a that also did an and | | Design and implement adders and subtractors | adders, subtractors, | | | | | | | 3.5 Explain the half-adder and full-adder circuit | Explain the half-adder and | | | Danian and | | | | | | | and full-adder circuit | full-adder circuit | | using logic gates | Design and | | | | | | | 265 1: 4 1 16 16 1 | 1 1 1 10 10 1 | | T 1 4 11 1 | implementation of | | | | | | | 3.6 Explain the half and full | | | Implement adders and | adders and | | | | | | | subtractor circuit. | subtractor circuit. | | subtractors using logic | subtractors using | | | | | | | | | | gates | logic gates | 71 | | | | | | | | | | | / 1 | • | 3.7 Explain the design and | Explain the design and | | | Design and | | |-------|--|-----------------------------|--------------|-------------------------|------------------------|---------------| | | implementation of half | implementation of half and | | Design and implement | implementation of | | | | and full subtractor | full subtractor circuits | | of 4-bit binary | 4-bit binary | | | | circuits using the | using the Karnaugh map | | adder/subtractor and | adder/subtractor and | | | | Karnaugh map | | | BCD adder using | BCD adder using | | | | | | | digital ICs | digital ICs | | | | 3.8 Explain the design and | Explain the design and | | | | | | | implementation of half | implementation of half and | | Implement of 4-bit | | | | | and full subtractor | full subtractor circuits | | binary adder/subtractor | | | | | circuits using the | using the Karnaugh map | | and BCD adder using | | | | | Karnaugh map | | | digital ICs | | | | | | | | | | | | Gener | al Objective 4.0: Know Mult | iplexers and De-Multiplexer | rs | | | | | 9-11 | 4.1 Explain multiplexers | Explain multiplexers and | Textbooks | | Guide the students | Digital Logic | | | and de-multiplexers | de-multiplexers | Journals | | to: | Trainer. | | | | | Computer | Interpret truth tables | Interpret truth tables | | | | 4.2 Explain the basic | Explain the basic functions | Internet | for multiplexers and | for multiplexers and | Logic gates. | | | functions and block | and block diagram of | Projector | de-multiplexers | de-multiplexers | | | | diagram of multiplexers | multiplexers and de- | Marker | | | DMM. | | | and de-multiplexers | multiplexers | Marker Board | Implement multiplexer | Implement | | | | | | | and demultiplexer | multiplexer and | Bench Power | | | | | | using logic gate | demultiplexer using | Supply. | | | 4.3 Explain the different | Explain the different types | | | logic gate | | | | types and IC | and IC configurations. | | | | Function | | | configurations. | | | Design multiplexer and | Design multiplexer | Generator | | | | 20. | | demultiplexer using | and demultiplexer | | | | 4.4 Explain interpretation of | Explain interpretation of | | logic gates and study | using logic gates | Breadboard. | | | truth tables for | truth tables for | | of IC 74150 and IC | and study of IC | | | | multiplexers and de- | multiplexers and de- | | 74154 | 74150 and IC 74154 | Oscilloscope | | | multiplexers | multiplexers | | | | | | | | | | | | | | | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | | | 1 | 1 | JI | | | Genera | al Objective 5.0: Understand | Latches, flip-flops, and Cor | unters | | | | |--------|------------------------------|------------------------------|--------------|---------------------------|----------------------|---------------| | 12-13 | 5.1 Describe the concept of | Explain the concept of the | Textbooks | | Guide students to: | Digital Logic | | | | latch and flip-flop | Journals | | | Trainer. | | | 1 1 | | Computer | Evaluate flip-flops, | Construct, test, and | | | | 5.2 Explain the difference | Explain the difference | Internet | counters, and shift | evaluate flip-flops, | IC TRAINER | | | between a latch and a | between a latch and a flip- | Projector | registers. | counters, and shift | kit | | | flip-flop | flop | Marker | | registers. | | | | | | Marker Board | Implement SISO, | | Bench Power | | | 5.3 Explain the working | Explain the working | | SIPO, PISO, and PIPO | Implement SISO, | Supply | | | principle of latch | principle of latch | | shift registers using | SIPO, PISO, and | | | | | | | flip-flops. | PIPO shift registers | Logic Gates, | | | | Explain the types of | | | using flip-flops. | Oscilloscope | | | latches | latches | | Verify of 4-bit ripple | | | | | | | | counter and Mod-10, | Construct, test, and | Connecting | | | 5.5 Explain the applications | | | Mod-12, and Mod-N | verify of 4-bit | Probes | | | of latches | latches | | ripple counters | ripple counter and | | | | | | | | Mod-10, Mod-12, | Logic gates. | | | | Explain the circuit | | | and Mod-N ripple | | | | structure of different | structure of different flip | | Simulate various | counters | DMM. | | | | flops and their applications | | combinational circuits, | | | | | applications | | | sequential circuits flip- | | Bench Power | | | | | | flops, and counters. | Simulate various | Supply. | | | 5.7 Explain the operation of | | | using relevant software | | | | | | D, and Master/Slave JK | | | circuits, sequential | Function | | | | flip flops using waveforms | | Interpret Truth Tables | circuits flip-flops, | Generator | | | | and truth tables. | | for latches, flip flops, | and counters. using | | | | tables. | | | and counters | relevant software | Breadboard. | | | 5.8 Explain the basic | Explain the basic concept | | | Interpret Truth | Oscilloscope | | | concept of counters | of counters | | | Tables for latches, | Светновеоре | | | tendept of country | | | | flip flops, and | | | | 5.9 Explain the following | Explain the following | | | counters | | | s synchronous counters nters • Binary counters • Divide by N rippl counters nter • Decade counter • Timers | | CALL | | | |--|---|---
--|--| | tables for truth tables for latches, flops, and flops, and counters | | | | | | | | | | _ | | | 1 1 | | Guide the students | Computer | | s. Microcontrollers. | Journals | | to: | | | | | 1 | _ | Arduino Uno | | | | Microcontrollers. | Microcontrollers. | kits | | | 3 | | | Rasbery Pi | | | | | | Microcontroll | | | Marker-Board | | | er Trainer. | | | | 1 1 1 1 | | er framer. | | S and ATMEGAS and | | - | - | IC | | PIC | | ciock pins. | and clock pins. | Programmer. | | | | Perform Racio | Perform Rasic | | | mtw11a Evalois Missassatus 11 su | | | | Bench Power | | | | i iogiaiiiiiiig. | i rogianining. | supply. | | Frogramming | | Load the program from | Load the program | | | * • • • • • • • • • • • • • • • • • • • | | | from PC to | Breadboard. | | | ous and synchronous and synchronous counters Inters N ripple Divide by N ripple counters Decade counter Timers Shift registers Explain how to interpret truth tables for latches, fl flops, and counters Inderstand Microcontrollers and Proposes. Explain the Concept Microcontrollers. Chitecture Explain the Architecture the following Microcontrollers; Arduino Uno | ous and synchronous and synchronous counters N ripple Divide by N ripple counters Decade counter Timers Shift registers Explain how to interpret truth tables for latches, flip flops, and counters Inderstand Microcontrollers and Programming forcept Explain the Concept Microcontrollers. Explain the Architecture of the following Microcontrollers, Microcontrollers, Marker Marker-Board ATMEGAS and PIC Projector Marker-Board ATMEGAS and Projector Marker-Board Explain Microcontroller | ous and synchronous and synchronous counters • Binary counters • Divide by N ripple counters • Decade counter • Timers • Shift registers to Explain how to interpret tables for truth tables for latches, flip ops, and flops, and counters Inderstand Microcontrollers and Programming flops, and counters Inderstand Microcontrollers. In | ous and synchronous and synchronous counters • Binary counters • Divide by N ripple counters • Decade counter • Decade counter • Timers • Shift registers to Explain how to interpret tables for truth tables for latches, flip flops, and counters Inderstand Microcontrollers and Programming Inderstand Microcontrollers and Programming Incept of the following | | 6.4 Explain Microcontroller | Explain Microcontroller | via programmer. | microcontroller via | | |------------------------------|---------------------------|-----------------------|-----------------------|--------------| | Programming | Programming | via programmer. | programmer. | Vero Board | | Instruction set | Instruction set | Setup the hardware | programmer | , ere Beara | | Programming | Programming | (vero board, | Setup the hardware | Serial Cable | | Language | Language | breadboard, | (vero board, | | | • C++ | • C++ | microcontroller, led, | breadboard, | Sensors. | | Python | Python | sensors, e.t.c) | microcontroller, led, | | | | | | sensors, e.t.c) | Soldering | | 6.5 Explain how to interface | Explain how to interface | Interface | | kits. | | with microcontrollers | with microcontrollers and | microcontrollers with | Interface | | | and sensors | sensors | sensors. | microcontrollers | Computer | | | | | with sensors. | with . | | 6.6 Explain how to interface | | | | appropriate | | microcontrollers with | microcontrollers with | | | software | | ADC, DAC, or other | ADC, DAC, or other | V , Y | | | | microcontrollers | microcontrollers | | | | | ALUATION: CA 60% EXAM | IINATION: 40% | · | | | | | CARD | | | | | | IINATION: 40% | | | | # **Technical Documentation and Report Writing** | PROGRAMME: NATIONAL DIPLOMA ELECTRICA | L AND ELECTRONIC ENGINEE | RING TECHNOLOGY | |---|---------------------------------------|---| | COURSE TITLE: Technical Documentation and Report | COURSE CODE: EEC 113 | CONTACT HOURS: 4 | | Writing | CREDIT UNIT: 3 | THEORETICAL: 1 | | YEAR: I SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 3 | | GOAL: This course is designed to equip students with the k | nowledge and skills in writing profes | sional, and effective technical documentation | GOAL: This course is designed to equip students with the knowledge and skills in writing professional, and effective technical documentation and reports. GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Understand the principles of technical communication. - 2.0 Know tools and software for creating and editing technical documents. - 3.0 Understand the structure and formatting of technical documentation. - 4.0 Know professional technical report writing. - 5.0 Understand logbooks, work reports, risk assessments and method statements. - 6.0 Create project documentation. | PROGR | AMME: NATIONAL DIPL | OMA ELECTRICAL | AND ELECTRO | ONIC ENGINEERING T | TECHNOLOGY | | |----------|--|--|---|---|---|---| | | E TITLE: Technical Docume | ntation and Report | COURSE CODE | : EEC 113 | CONTACT HOURS: 4 | | | Writing | | | CREDIT UNIT: 3 | | THEORETICAL: 1 | | | YEAR: | YEAR: I SEMESTER: I | | | E: | PRACTICAL: 3 | | | | E SPECIFICATION: THE | | | | | | | GOAL: | This course is designed to equ | ip students with the kn | owledge and skills | in writing professional, a | nd
effective technical docu | imentation and | | reports. | | | | | | | | General | Objective 1.0: Understand the | e principles of technica | l communication | | | | | THEOR | RETICAL CONTENT | | • | PRACTICAL CONTEN | IT | | | Week | Specific Learning Outcome | Teacher's Activities | Resources | Specific Learning Outcome | Teacher's Activities | Resources | | 1 | of technical documentation. 1.3 Define general purpose writing 1.4 Explain differences | Explain technical documentation Explain the importance technical documentation Explain general purpowriting Explain differences between technical and general-purpose writing Explain types of technical | e of Markers on. Projector Computer Internet se | Identify types of technical documentation | Guide students to: Identify types of technical documentation | Sample Technical documentation Sample reports Sample datasheets | | | | documents in engineer Datasheets | | | | | | | | 110 | | | - | |--|---|---|-----------------------|--|-------------------------------------| | Datasheets Manuals Project reports Project documentation, Risk assessments Method statements. 1.6 Explain principles of: Clarity | Manuals Project reports Project documentation, Risk assessments Method statements. Explain principles of: Clarity | | | | | | • Conciseness | Conciseness | | | | | | • Coherence. | • Coherence. | | | | | | | | | | | | | 1.7 Explain audience analysis | Explain audience analysis | | | | | | of audience analysis. | e Explain the importance of audience analysis | | | | | | General Objective 2.0: Know tools a | | | cal documents. | | | | 2-4 2.1 Explain tools/software for creating and editing technical documentation Microsoft Office OpenOffice LaTeX PDF editors. 2.2 Explain tools/software | Explain tools/software for creating and editing technical documentation: Microsoft Office OpenOffice LaTeX PDF editors. Explain tools/software for | Journals White Board Markers Projector Computer | Operate text editors: | Guide students to: Operate text editors: Microsoft Word, LaTeX. Prepare simple drawings, diagrams using AutoCAD. | Computer with appropriate software. | | for diagramming and technical drawings: • AutoCAD • BricsCAD • Matlab visualization, • Microsoft Visio • Microsoft Excel • Microsoft PowerPoint 2.3 Explain collaborative platforms for document creation and editing — teamwork and remote cooperation: • Google Docs • Microsoft 365 • Overleaf. | diagramming and technical drawings: | | Conduct simple calculations and prepare graphs using Microsoft Excel. Use collaborative platform. • Google Docs. | Conduct simple calculations and prepare graphs using Microsoft Excel. Use collaborative platform. Google Docs | | |--|---|--|--|---|-------------------------| | General Objective 3.0: Understand th | e structure and formatting of | f technical do | cumentation. | | | | 5-7 3.1 Explain general structure for documents, reports: • Title • List of changes • Objectives • Background Information – • Theory, • Components, • Equipment, | Explain general structure for documents, reports Title List of changes Objectives Background Information – Theory, Components, Equipment, | Textbooks Journals White Board Markers Projector Computer Internet | Prepare project proposal including its specific sections: | Guide students to: Prepare project proposal including its specific sections: | Sample project proposal | | Procedures, Schematic diagram(s), Result Analysis, Answers to questions, Summary, Content List (for Tables, Graphs, Diagrams, etc.) Appendices. 3.2 Explain how to write project proposal including its specific sections: Client requirements Specification Proposed drawings Bill of materials Material and labour cost estimation Execution period 3.3 Explain text formatting and arrangements on page. 3.4 Explain page structure. | Procedures, Schematic diagram(s), Result Analysis, Answers to questions, Summary, Content List (for Tables, Graphs, Diagrams, etc.) Appendices. Explain how to write project proposal including its specific sections: Client requirements Specification Proposed drawings Bill of materials Material and labour cost estimation, Execution period Explain text formatting, and arrangements on page. Explain page structure. | | Material and labour cost estimation Execution period | • Material and labour cost estimation • Execution period | | |--|--|----|---|--|--| | 3.5 Explain how to use styles | Explain how to use styles | 80 | | | | | - | | | | | | | |----------------|---|--|--|---|---|--| | | to format text and | to format text and | | | | | | | paragraphs. | paragraphs. | | | | | | | | | | | | | | | 3.6 Explain usage of tables, | Explain usage of tables, | | | | | | | drawings, math | drawings, math equations. | | | | | | | equations. | | | | | | | General | Objective 4.0: Know professi | ional technical report writin | ıg. | | • | | | General
8-9 | Objective 4.0: Know profession 4.1 Explain the purpose of each of the following sections of a project report: • Cover page • Title page • Approval page • Declaration page • Table of contents • Acknowledgements • Abstract/Summary • List of Symbols and Abbreviation • List of Tables • List of Figures • Body of the project report, divided into chapters • References • Appendices. | Explain the purpose of each of the following sections of a project report: | Textbooks Journals White Board Markers Projector Computer Internet | Write a project report based on list of project sections. Identify mistakes in technical report and correct them. Identify guidelines for document calculations. Identify guidelines for graphs and numerical data preparation and representation. | Guide students to: Write a project report based on list of project sections. Identify mistakes in technical writing and
correct them. Identify guidelines for document calculations. Identify guidelines for graphs and numerical data preparation and representation. | Sample project report Sample technical report | | | ONA. | ReferencesAppendices. | | | | | | ļ | _ | | · | | | |--|--|---------------|-------------------------|-------------------------|------------| | 4.2 Explain technical writing style guidelines: Writing objective and factual content. Using engineering-specific terminologies effectively. Ensuring grammatical correctness and consistency in style. | style guidelines: | | | | | | 4.3 Explain common mistakes in technical writing and how to avoid them. | Explain common mistakes in technical writing and how to avoid them. | 7 | | | | | 4.4 Explain guidelines for document calculations. | Explain guidelines for document calculations. | | | | | | 4.5 Explain guidelines for graphs and numerical data preparation and representation. | Explain guidelines for graphs and numerical data preparation and representation. | | | | | | General Objective 5.0: Understand lo | gbooks, work reports, risk a | ssessments an | d method statements. | | | | 10-13 5.1 Define Logbook | Explain Logbook | Textbooks | | Guide students to | Assessment | | | | Journals | Fill a Logbook based on | Fill a Logbook based on | charts | | 5.2 Explain risk assessment | Explain risk assessment | | work carried out. | work carried out. | | | | | Markers | | | Sample | |-------------------------------------|-------------------------------------|-----------|-------------------------------------|-------------------------------------|--------| | 5.3 Explain how to fill a | Explain how to fill a | Projector | Write a laboratory | Write a laboratory | RAMS. | | Logbook based on work | _ | Computer | experiment report. | experiment report. | | | carried out. | carried out. | Internet | | | | | | | | Write a non-technical | Write a non-technical | | | 5.4 Explain how to write | Explain how to write | | report for: | report for: | | | laboratory experiment | laboratory experiment | | Progress report | Progress report | | | report. | report. | | New Development | New Development | | | | | | Recommendation | Recommendation | | | 5.5 Explain the purpose of | Explain the purpose of | | | | | | non-technical report | non-technical report | | Prepare complete RAMS | Prepare complete RAMS | | | writing: | writing: | | document. | document | | | Background | • Background | | | | | | information on | information on project | | | | | | project | Progress report | | | | | | Progress report | New Development | | | | | | New Development | • Response to | | | | | | Response to | correspondence | | | | | | correspondence | Recommendation | | | | | | Recommendation | | | | | | | 5.6 Explain the purpose for | Explain the purpose for | | | | | | Risk Assessment (RA). | Risk Assessment (RA). | | | | | | | Explain how to prepare | | | | | | 5.7 Explain how to prepare | Risk Assessment. | | | | | | Risk Assessment. | | | | | | | | Explain method statement | | | | | | 5.8 Explain method | ▼ | | | | | | statement | | | | | | | | Explain the purpose for | | | | | | 5.9 Explain the purpose for | Method Statement (MS). | | | | | | Method Statement (MS) | | | | | | | | | Explain how to prepare | | | | | |--------|-------------------------------|-------------------------|---------------|----------------------------|----------------------------|-----------| | | 1 1 1 | Method Statement. | | | | | | | Method Statement. | | | | ()' | | | | | Explain reasons for | | | | | | | 5.11 Explain reasons for | RAMS preparation. | | | | | | | RAMS preparation. | | | | | | | eneral | Objective 6.0: Create project | documentation. | | | | • | | 14-15 | 6.1 Explain meaning of | Explain meaning of | Textbooks | | Guide students to: | Sample | | | international standards | international standards | Journals | Prepare of a | Prepare of a | Technical | | | (ISO, IEEE). | (ISO, IEEE). | White Board | comprehensive technical | comprehensive technical | report | | | | | Markers | project related to | project related to | | | | 6.2 Explain purpose for | Explain purpose for | Projector . | hypothetical or real- | hypothetical or real- | | | | regulatory compliance | regulatory compliance | Computer | world scenarios in | world scenarios in | | | | documentation. | documentation. | - | Electrical and Electronics | Electrical and Electronics | | | | | | International | Engineering - individual | Engineering - individual | | | | 6.3 Explain how to write | Explain writing quality | standards | or group projects. | or group projects. | | | | quality assurance reports. | assurance reports. | | | | | | | | | | Present the projects to | Present the projects to | | | | | | | the class for | the class for | | | | | | 1 | Peer and teacher | Peer and teacher | | | | | | | | evaluation based on | | | | | | | clarity, accuracy, and | clarity, accuracy, and | | | | | | | professionalism. | professionalism. | | EVALUATION: CA: 70% EXAMINATION: 30% # Electrical Engineering Science I | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | |--|----------------|---|------------------|--|--|--| | COURSE TITLE: Electrical Engineering Science I | CODE: EEC 114 |) | CONTACT HOURS: 3 | | | | | | CREDIT UNIT: 3 | | THEORETICAL: 1 | | | | | YEAR: I SEMESTER: I | PRE-REQUISITE: | | PRACTICAL: 2 | | | | GOAL: This course is designed to equip student with knowledge of how electric current flows, the relationships between various types of energy and their behaviours in resistive and capacitive systems. **GENERAL OBJECTIVES:** On completion of this course, the students should be able to: - 1.0 Understand the concept of the electric current flow. - 2.0 Understand simple DC circuits. - 3.0 Understand types of energy and their inter-relationships. - 4.0 Understand the concept of electrostatics, electric charge and capacitance of a capacitor. | PROGI | RAMME: NATIONAL DIPLO | | | | | | | |--------|--------------------------------|---------------------------|------------------|----------------------------------|-------------------------|---------------|--| | COURS | SE TITLE: Electrical Enginee | ring Science I | CODE: EEC 11 | 4 | CONTACT HOURS: 3 | | | | | | | CREDIT UNIT | : 3 | THEORETICAL: 1 | | | | YEAR: | I SEMESTER: I | | PRE-REQUISI | TE: | PRACTICAL: 2 | | | | COURS | SE SPECIFICATION: THE | ARETICAL AND PRAC | CTICAL CONT | ENT | | | | | GOAL: | This course is designed to eq | uip student with knowled | ge of how electr | ric current flows, the relations | hips between various ty | pes of energy | | | | and their behaviours in resist | ive and capacitive system | S. | | | | | | Genera | l Objective 1.0: Understand th | e concept of the electric | current flow. | | | | | | THEO | RETICAL CONTENT | | | PRACTI | CAL CONTENT | | | | Week | Specific Learning Outcome | Teachers' Activities | Resources | Specific Learning | Teachers' Activities | Resources | | | | | | | Outcome | | | | | 1 – 2 | 1.1 Define an atom | Explain atomic | Textbooks | | Guide students to: | Resistor | | | | | | Journals | Determine the effect of | Determine the effect | | | | | 1.2 Explain with aid of | Explain with aid of | White | variable EMF on single | of variable EMF on | Voltmeter | | | | diagram, the structure | diagram, the structure | board | loop DC circuit. | single loop DC | | | | | and composition of an | and composition of an | Marker, | | circuit. | Ammeter | | | | atom | atom. | Computer | | | | | | | | · · · | Charts | Measure current and | Measure current and | Ohmmeter | | | | 1.3 Explain the concepts of | Explain the concepts of | | | | | | | | conventional current | conventional current | Projector. | simple circuit using a | source in a simple | Cables | | | | flow and electron flow. | flow and electron flow. | | multimeter | circuit using a | | | | | | | | | multimeter | Power | | | | 1.4 Differentiate between | Explain the differences | | | | source | | | | conductors, insulators | between conductors, | | | | | | | | and semi-conductors. | insulators and semi- | | | | EMF source | | | | | conductors. | | | | Multimeter | | | | 1.5 Define electric current | Explain electric current | | | | | | Bulb. | 1.6 Explain potential difference (PD) and | Explain potential difference (PD) and | | | CA | Video clips | |---|--
---|---|--|--| | | | | | | | | , , , | | | | | | | Symbols | Symbols | | V.V | | | | 1.7 Explain resistance, its | Explain resistance, its | | | | | | _ | • | | | | | | difficulties and by moons | and symeons | | 4 | | | | 1.8 Explain multiples and | Explain multiples and | | | | | | sub-multiples of electric | sub-multiples of electric | | | | | | quantities; (e.g. Mega | quantities; (e.g. Mega | | Y | | | | 10^6 , kilo- 10^3 , etc.) | 10^6 , kilo- 10^3 , etc.) | | O ' | | | | Objective 2.0: Understand si | mple D.C. circuits. | | | | | | 2.1 Define direct current | Explain direct current | Textbooks | | Guide students to: | Resistor | | (DC). | (DC). | Journals | Verify Ohm's law. | Verify Ohm's law. | | | | | White | | | Voltmeter | | 2.2 State the analogy | - | board | Demonstrate series and | Demonstrate series | | | between current flow | between current flow and | Marker, | parallel circuits. | and parallel circuits. | Ammeter | | and water flow. | water flow. | - | | | | | | | | ' | 1 | Ohmmeter | | | _ | | | | | | | | Projector. | in a conductor. | | Cable | | using diagram. | diagram. | | | conductor. | | | | | | | | EMF | | 2.4 Explain Ohm's law | Explain Ohm's law. | | 1 | 1 | sources | | | | | Laws with DC circuits. | | | | 2.5 Explain how to solve | Explain how to solve | | | with DC circuits. | Thermomete | | | | 87 | | | | | <i>'D'</i> | | - | electromotive force (EMF), their units and symbols 1.7 Explain resistance, its units and symbols 1.8 Explain multiples and sub-multiples of electric quantities; (e.g. Mega 10 ⁶ , kilo-10 ³ , etc.) 1 Objective 2.0: Understand si 2.1 Define direct current (DC). 2.2 State the analogy between current flow | electromotive force (EMF), their units and symbols 1.7 Explain resistance, its units and symbols 1.8 Explain multiples and sub-multiples of electric quantities; (e.g. Mega 10 ⁶ , kilo-10 ³ , etc.) 1 Objective 2.0: Understand simple D.C. circuits. 2.1 Define direct current (DC). 2.2 State the analogy between current flow and water flow. 2.3 Describe basic DC circuits with source using diagram. 2.4 Explain Ohm's law electromotive force (EMF), their units and symbols Explain resistance, its units and symbols Explain multiples and sub-multiples of electric quantities; (e.g. Mega 10 ⁶ , kilo-10 ³ , etc.) Explain direct current (DC). Explain the analogy between current flow and water flow. Explain the basic DC circuit with source using diagram. Explain Ohm's law. | electromotive force (EMF), their units and symbols 1.7 Explain resistance, its units and symbols 1.8 Explain multiples and sub-multiples of electric quantities; (e.g. Mega 10 ⁶ , kilo-10 ³ , etc.) 1 Objective 2.0: Understand simple D.C. circuits. 2.1 Define direct current (DC). 2.2 State the analogy between current flow and water flow. 2.3 Describe basic DC circuits with source using diagram. 2.4 Explain Ohm's law electromotive force (EMF), their units and symbols Explain resistance, its units and symbols Explain multiples and sub-multiples of electric quantities; (e.g. Mega 10 ⁶ , kilo-10 ³ , etc.) Explain direct current (DC). Explain the analogy between current flow and water flow. Computer Charts Animations Projector. | electromotive force (EMF), their units and symbols 1.7 Explain resistance, its units and symbols 1.8 Explain multiples and sub-multiples of electric quantities; (e.g. Mega 10 ⁶ , kilo-10 ³ , etc.) 1 Objective 2.0: Understand simple D.C. circuits. 2.1 Define direct current (DC). 2.2 State the analogy between current flow and water flow. 2.3 Describe basic DC circuits with source using diagram. 2.4 Explain Ohm's law Explain twitis and symbols Explain multiples and sub-multiples and sub-multiples of electric quantities; (e.g. Mega 10 ⁶ , kilo-10 ³ , etc.) Explain direct current (DC). Explain direct current (DC). Explain the analogy between current flow and water flow. Explain the board Demonstrate series and Marker, Computer Charts Charts Animations Projector. Explain the basic DC circuits with source using diagram. Explain Ohm's law. Explain Ohm's law. Explain Ohm's law. Explain how to solve Explain how to solve | electromotive force (EMF), their units and symbols 1.7 Explain resistance, its units and symbols 1.8 Explain multiples and sub-multiples of electric quantities; (e.g. Mega 10°, kilo-10³, etc.) 1.9 Define direct current (DC). 2.1 Define direct current (DC). 2.2 State the analogy between current flow and water flow. 2.3 Describe basic DC circuits with source using diagram. 2.4 Explain Ohm's law 2.5 Explain Ohm's law 2.5 Explain how to solve Explain how to solve Explain multiples and sub-multiples and sub-multiples of electric quantities; (e.g. Mega 10°, kilo-10³, etc.) Explain multiples and sub-multiples and sub-multiples of electric quantities; (e.g. Mega 10°, kilo-10³, etc.) Explain multiples and sub-multiples and sub-multiples of electric quantities; (e.g. Mega 10°, kilo-10³, etc.) Explain multiples and sub-multiples and sub-multiples of electric quantities; (e.g. Mega 10°, kilo-10³, etc.) Explain multiples and sub-multiples and sub-multiples of electric quantities; (e.g. Mega 10°, kilo-10³, etc.) Explain direct current (DC). Explain direct current flow and water flow. Explain the analogy between current flow and water flow. Explain the basic DC circuits
with source using diagram. Explain the basic DC circuit the basic DC circuit with source using diagram. Explain the basic DC circuit the basic DC circuit with source using diagram. Explain the basic DC circuit the basic DC circuit with source using diagram. Explain the basic DC circuit the basic DC circuit with source using diagram. Explain the basic DC circuit t | | problems using Ohm's | problems using Ohm's | | | | r | |------------------------------|-----------------------------|----|-----------------------------|----------------------|-------------| | law. | law. | | Verify superposition | Verify superposition | | | | | | principle. | principle. | Electronic | | 2.6 Define resistivity and | Explain resistivity and | | | O | trainer | | conductivity of a | conductivity of a | | Determine the temperature | Determine the | | | conductor. | conductor. | | coefficient of a resistance | temperature | Video clips | | | | | | coefficient of a | | | 2.7 Explain the relationship | Explain the relationship | | | resistance | | | between resistance of a | between resistance of a | | | | | | conductor, its resistivity, | conductor, its resistivity, | | Verify the heating effect. | Verify the heating | | | length and area. | length and area. | | | effect. | | | 2.8 Differentiate between | Explain the differences | | | | | | series and parallel | between series and | | | | | | circuits. | parallel circuits. | | | | | | | | 0 | | | | | 2.9 Explain how to solve | Explain how to solve | | | | | | problems involving | problems involving | | | | | | resistivity and | resistivity and | | | | | | conductivity | conductivity | | | | | | | | | | | | | 2.10 Deduce the equivalent | _ | | | | | | resistance of series and | resistance of series and | | | | | | parallel circuits. | parallel circuits. | | | | | | 2.11 Explain Kirchhoff's | Explain Kirchhoff's | | | | | | Laws (KCL, KVL). | Laws (KCL, KVL). | | | | | | Edws (RCE, 1215). | Laws (RCL, R v L). | | | | | | | | | | | | | | | 88 | 2.12 Explain the | Explain the Superposition | | | $\overline{}$ | | |-----------------------------|----------------------------|-----|---|---------------|----------| | Superposition | Principle. | | | | | | Principle. | i interpre. | | • | | | | rinicipie. | | | | | | | 2.13 Explain how to solve | Explain how to solve | | | | | | problems involving | problems involving | | | | | | series and parallel | series and parallel | | | | | | circuits using | circuits using | | | | | | Kirchhoff's Laws and | Kirchhoff's Laws and | | | | | | superposition | superposition principles | | | | | | principles. | superposition principles | 113 | | | | | principles. | | | | | | | 2.14 Define temperature | Explain temperature | | | | | | coefficient of | coefficient of resistance. | XX | | | | | resistance. | | | | | | | | Use the expression for | | | | | | 2.15 Use the expression for | resistance at temperature | | | | | | resistance at | T°k and calculate change | | | | | | temperature T°k and | in resistance. | | | | | | calculate change in | | | | | | | resistance. | See from (2.15) the | | | | | | | change in resistance due | | | | | | 2.16 See from (2.15) the | to change in temperature. | | | | | | change in resistance du | _ | | | | | | to change in | Explain how to solve | | | | | | temperature. | problems involving | | | | | | temperature. | effect of temperature on | | | | | | | resistance. | | | | | | | resistance. | | | | <u> </u> | | WALL | | 89 | | | | | | | | | | | | M, | | | | | | | | | | | | | | tor | |---------------| | tor | | | | | | neter | | | | eter | | | | meter | | | | , | | | | | | es | m
nı
le | | General | Objective: 4.0 Understand the | he concept of electrostatics, | electric charg | ge and capacitance of a capacit | or. | | |---------|---|--|----------------|---------------------------------|--------------------|------------| | 11-14 | 4.1 Explain electric charge | Explain electric charge | Textbooks | | Guide students to: | Resistor | | | and state its unit. | and state its unit. | Journals | | (0' | | | | | | White | Verify Coulombs' Law | Verify Coulombs' | Capacitor | | | 4.2 State Coulomb's law | State Coulomb's law | board | using experiment. | Law using | | | | | | Marker | | experiment. | Voltmeter | | | 4.3 Explain how to solve | Explain how to solve | Computer | Perform experiment on | | | | | problems involving | problems involving | Internet | charging and discharging of | Perform experiment | Ammeter | | | coulomb's law. | coulomb's law. | Charts | a capacitor. | on charging and | | | | | | Animations | | discharging of a | Ohmmeter | | | 4.4 Explain: | Explain: | Projector. | | capacitor. | | | | • Electric field strength | • Electric field | | | | Cable | | | • Electric flux density | strength | | | | | | | Permittivity | • Electric flux | | | | EMF | | | Relative permittivity | density | 0 | | | source | | | Field intensity | Permittivity | 11/- | | | | | | Potential difference | Relative | O, | | | Electronic | | | • Electric flux | permittivity | | | | trainer | | | | Field intensity | | | | | | | | Potential difference | | | | | | | 4.5 Explain how to solve | Electric flux | | | | | | | problems involving the | | | | | | | 15 | terms in (4.4) above. | Explain how to solve | | | | | | 15 | • | problems involving the | | | | | | | 4.6 Define capacitance. | terms in (4.4) above. | | | | | | | | | | | | | | | 4.7 Derive an expression for | Explain capacitance. | | | | | | | | | | | | | | | WALL | | 91 | the capacitance of | | | | | |------------------------------|----------------------------|------------|-----|--| | parallel plate capacitors | Explain how to derive an | | | | | in terms of area, the | expression for the | | | | | distance between plates | capacitance of parallel | | | | | and permittivity of the | plate capacitors in terms | | | | | dielectric. | of area, the distance | | | | | | between plates and | | | | | | permittivity of the | | | | | 4.8 Derive an expression | dielectric. | | • | | | for the capacitance of a | | | | | | capacitor with | Explain how to derive an | 1//4 | | | | composite dielectrics. | expression for the | · () | | | | | capacitance of a capacitor | O ' | | | | 4.9 Derive an expression for | with composite | | | | | the voltage distribution | dielectrics. | | | | | between series | | | | | | connected capacitors. | Explain how to derive | | | | | | an expression for the | | | | | | voltage distribution | | | | | 4.10 Deduce an expression | between series | | | | | for the equivalent | connected capacitors. | | | | | capacitance for | | | | | | capacitors connected in | Explain how to deduce | | | | | series and in parallel. | an expression for the | | | | | | equivalent capacitance | | | | | 4.11 Derive an expression | | | | | | for the energy stored in | in series and in parallel. | | | | | a capacitor | | | | | |
 | | | l . | | | 4.12 Explain how to solve | Explain how to derive | | |---------------------------|-------------------------|-------| | problems involving | an expression for the | | | (4.8 - 4.11). | energy stored in a | . 10' | | | capacitor. | | | | | | | | Explain how to solve | | | | problems involving (4.8 | | | | - 4.11). | | **ASSESSMENT:** The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will take 10% of the total score, while the remaining 30% will be for the end of the semester examination score | PROGRAMME: NATIONAL DIPLOMA IN ELEC | CTRICAL AND ELECTRONICS EN | IGINEERING TECHNOLOGY | | | | | |---|--|--|--|--|--|--| | COURSE TITLE: Industrial Health and Safety | CODE: EEC 115 | CONTACT HOURS: 2 | | | | | | | CREDIT UNIT: 2 | THEORETICAL: 1 | | | | | | YEAR: I SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 1 | | | | | | GOAL: This course is designed to equip student with | h knowledge and skills to observe He | alth and Safety in an Industrial field | | | | | | GENERAL OBJECTIVES: On completion of this | course, the students should be able to | | | | | | | 1.0 Integrate health and safety procedures into the we | ork environment. | | | | | | | 2.0 Relate legislation from the Occupational Health | and Safety Act and regulations. | • | | | | | | 3.0 Know how to deal with hazards. | | | | | | | | 4.0 Know the methods of control that will reduce exposure to hazards. | | | | | | | | 5.0 Understand health and safety practices | ~ · | | | | | | | 6.0 Understand the concept of First Aid | \(\)\ | | | | | | | PROGRAMME: NATIONAL DIPLOMA IN IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | |---|----------------------|------------------|--|--|--|--|--| | COURSE TITLE: Industrial Health and Safety | CODE: EEC 115 | CONVACT HOURS: 2 | | | | | | | | CREDIT UNIT: 2 | THEORETICAL: 1 | | | | | | | YEAR: I SEMESTER: I | PRE-REQUISITE: | PRACTICAL: 1 | | | | | | | COLIDGE CRECIEICATION THE ARTICAL AND | ND A COLO AL CONTENT | | | | | | | ### COURSE SPECIFICATION: THEARETICAL AND PRACTICAL CONTENT GOAL: This course is designed to equip student with knowledge and skills to observe Health and Safety in an Industrial field General Objective 1.0: Integrate health and safety procedures into the work environment. | THEO | THEORETICAL CONTENT | | | PRACTICAL CONTENT | | | | |------|--|---
----------------------------|---|---|-----------------------------|--| | Week | Specific Learning Outcome | Teachers' Activities | Resources | Specific Learning Outcome | Teachers' Activities | Resources | | | 1-3 | 1.1 Explain accidents 1.2 Explain injury | Explain between accidents and injury | Textbook Journals | Identify different types of safety signs. | Guide learners on a site inspection to identify hazards. | Checklist
templates | | | | 1.3 Define health and safety | Explain health and safety | Marker,
Whiteboard | Identify and document workplace hazards in a real or simulated environment. | - | Risk | | | | 1.4 Differentiate between health and safety | Explain the differences between health and safety | Projector, | Perform risk assessments and recommend control | Supervise learners
as they carry out a
risk assessment on a | assessment forms | | | | 1.5 Explain the importance of health and safety. | Explain the importance of health and safety. | Computer health and safety | strategies. Select, use, and maintain | workstation or task. | Helmets, gloves, | | | | 1.6 Differentiate between accidents and injury | Explain the differences between accidents and | policy
Governmen | correct PPE for specific tasks. | Demonstrate how to inspect, wear, and maintain PPE. | masks,
safety
glasses | | | | 1.7 Explain the functions of the Health Safety (HSE) Officer | injury Explain the functions of | t regulations, | Select and install appropriate signage according to location- | | | | | | 1.8 Describe the elements | the Health Safety (HSE)
Officer | | specific hazards. | Supervise student practice | Fire alarm, extinguisher | | | | of a successful health and safety programme | Explain the elements of | | | | , evacuation plan | |---------|---|--------------------------|---------------|----------------------------|--------------------|-------------------| | | | a successful health and | | • | | 1 | | | 1.9 Explain the causes of | safety programme | | | | | | | accidents and injuries | Explain the causes of | | | | Safety sign | | | | accidents and injuries | | | | materials, | | | | | | | | tape, wall | | | 1.10 Describe the major | Explain the major items | | | | surface | | | items on a safety policy | on a safety policy | | | | Surface | | | 1.11 Explain accident | Explain accident | | | | | | | reporting and the | reporting and the | | 102 | | Incident | | | preparation of an | preparation of an | | | | report | | | accident | accident Report | (| | | forms, role- | | | report | | | | | play | | | | Explain the safety audit | | | | scenarios | | | 1.12 Explain the safety | process | | | | Scenarios | | | audit process | | | | | | | | | Explain sampling and | | | | | | | 1.13 Explain sampling and monitoring | monitoring | | | | | | | 1.14 Explain risk | Explain risk | | | | | | | identification and | identification and | | | | | | | assessment process. | assessment process. | | | | | | General | Objective 2.0: Relate legisla | tion from the Occupation | al Health and | Safety Act and regulations | | | | 4-6 | 2.1 Explain the basic rights | Explain the basic rights | Textbook | Apply relevant legislative | Guide students to: | compliance | | | of workers under the | of workers under the | | requirements to assess | · | checklist | | | Occupational Safety | Occupational Safety and | Journals | workplace compliance. | | template | | | and Health | Health Administration | Marker, | 1 | Apply relevant | 1 | | | Administration | (OSHA) | Whiteboard | | legislative | | | | (OSHA) | | ,, integould | | 10513141110 | | | | Explain who is covered | Projector, | Interpret 1 | key legislative | requirements to | Video clips | |--|-----------------------------------|------------|-------------|-----------------|----------------------|-------------| | 2.2 Explain who is covered | and who is not | Projector, | _ | | _ | video clips | | and who is not | and who is not | Computer | - | signage and | assess workplace | | | and who is not | Explain the process for | health and | documents. | | compliance. | | | 2.3 Explain the process for | the steps to follow under | safety | | | | | | the steps to follow | the right to refuse work | policy | | | | | | under the right to refuse | and the right to stop | P | | gal reporting | Interpret key | | | work and the right to | work | | procedures | | legislative safety | | | stop work | Well | | conditions | under OHS law. | signage and | | | step well | | | ,(| | documents. | | | | Explain workplace | | | | | | | 2.4 Explain workplace | hazardous materials | | 10, | | | | | hazardous materials | (industry-specific) | | | | Practice legal | | | (industry-specific) | Manufacturing | (| | | reporting procedures | | | Manufacturing | • Construction | | | | for unsafe | | | Construction | Agriculture | | | | conditions under | | | Agriculture | • Extractive | | | | OHS law. | | | Extractive | | | | | | | | Energy | Explain workplace | | | | | | | | hazardous materials | | | | | | | 2.5 Explain workplace | information systems. | | | | | | | hazardous materials | | | | | | | | information systems. | Explain how workplace | | | | | | | | hazardous materials | | | | | | | 2.6 Explain how workplace | information is relayed to | | | | | | | hazardous materials | workers. | | | | | | | information is relayed | | | | | | | | to workers. | Explain the six | | | | | | | 2.7 Evaloin the six | categories of controlled | | | | | | | 2.7 Explain the six | substances e.g. | | | | | | | categories of controlled substances e.g. | Chemical. | | | | | | | substances e.g. | | | | | | | | | Chemical. | | | | | | |---------|---|---|---|---|---|--| | Conoral | Objective 2 Or Understand | hovy to dool with howards | | | | | | | Objective 3.0: Understand I | 1 | 1 | | | 1 | | 7-8 | 3.1 Explain the steps to deal with hazards 3.2 Describe the factors to determine the degree of hazard 3.3 Differentiate between the terms; Hazardous and toxic | Explain the steps to deal with hazards Explain the factors to determine the degree of hazard Explain the terms; | Textbook Journals Marker, Whiteboard , Projector, | Identify and record hazards in a work environment. Conduct a basic risk assessment and suggest control measures. Apply appropriate hazard control methods using the | Guide students to: Identify and record hazards in a work environment. Conduct a basic risk assessment and suggest control | Hazard spotting checklist PPE instruction posters | | | Acute and chronic 3.4 Explain the terms related to health hazards | Hazardous and toxic Acute and chronic | Computer health and safety policy | hierarchy of controls. Report on hazards to supervisors or safety reps. | measures.Apply appropriate hazard control | Floor plan templates, | | | 3.5 Explain the types of hazards | Explain the terms related to health hazards Explain the types of | 8 | | methods using the hierarchy of controls. Report on hazards to | colored
markers,
legend
guides | | | 3.6 Describe noise production, measurement, and control | hazards Describe noise production, measurement, and | | | supervisors or safety reps. | Incident reports, analysis | | | 3.7 Explain how to protect the worker from noise hazards3.8 Explain how to protect the worker from heat | Explain how to protect the worker from noise hazards | | | | templates | | | | T | 1 | I | | | |---------|--|--|-----------------------|--|--|----------------------| | | stress and cold stress. | Explain how to protect | | | | | | | | the worker from heat | | | CV | | | | | stress and cold stress. | | | | | | General | Objective 4.0: Know the mo | ethods of control that will | reduce expos | ure to hazards | J | | | 9-11 | 4.1 Define general | Explain general | Textbook | Identify control measures | Guide students to: | Video clips | | | ventilation and exhaust systems to maintain | ventilation and exhaust systems to maintain safe | Journals | in place and assess their adequacy and | Identify control | Emergency | | | safe work environments | work environments | Marker,
Whiteboard | effectiveness. | measures in place and assess their | procedure charts, | | | 4.2 Describe work | Explain work practices and controls that can | , willieboard | | adequacy and effectiveness. | sample
evacuation | | | practices and controls that can reduce | reduce exposure levels | Projector, | HIL | Apply the hierarchy | maps. | | | exposure levels | | Computer health and | Apply the hierarchy of control to select appropriate | of control to select | | | | | Explain qualitative and | safety | measures for specific | appropriate
measures for specific hazards. | | | | 4.3 Describe qualitative and quantitative | quantitative respirator systems | policy | hazards. | - | | | | respirator systems | Explain different | | | | | | | 4.4 Explain different protective devices to minimize exposure to | protective devices to minimize exposure to hazards | | | | | | | hazards | Explain lock-out and isolation systems | | | | | | | 4.5 Explain power outage and isolation systems | Explain Lock-Out Tag- | | | | | | | Explain Lock-Out Tag-Out and Try-Out | Out and Try-Out (LOTOTO) systems | | | | | | | (LOTOTO) systems | | | | | | |---------|---|--|-----------------------|--|--|-------------------------------| | General | Objective 5.0: Understand | Lealth and safety practices | <u> </u>
 | | CY | | | | | | | | | | | 12-13 | 5.1 Explain safety and | Explain safety and health | Textbook | Identify safety and health | Guide students to: | Safety | | | health requirements. | requirements. | Journals | requirements. | Identify safety and health requirements. | Charts | | | 5.2 Explain Safety signs and symbols. | Explain Safety signs and symbols. | Marker,
Whiteboard | Identify Safety signs and symbols. | Identify Safety signs | Safety boots | | | 5.3 Describe the | Explain Safety signs and | , | Demonstrate the use of | and symbols. | Helmets | | | importance of using personal protective | symbols. | Projector, | PPH | Demonstrate the use of PPE | Goggle | | | equipment (PPE) | Explain PPE related | Computer health and | Safety boots | | Coverall | | | 5.4 Explain PPE related procedures | procedures | safety | HelmetsGoggle | Safety bootsHelmets | Earmuff | | | 5.5 Explain the safety | Explain the safety principles for working | policy | Face ShieldCoverall | GoggleFace Sheild | Harness | | | principles for working on and around | on and around electrical equipment; | | • Earmuff • Harness | CoverallEarmuff | Nose Mask | | | electrical equipment; • Effects of electric | Effects of electric current | | Nose Mask Hand glove | HarnessNose Mask | Hand glove | | | current on the | on the human body. | | Tiunu gio ve | Hand glove | Evacuation | | | human body. Factors that affect
the severity of an
electric shock. | Factors that affect the severity of an | | Organize a simulated fire drill. | Organize a simulated fire drill. | maps,
alarms,
stopwatch | | | The effects of arc and blast on the | electric shock. The effects of arc and blast on | | Debrief students post-exercise. | Debrief students post-exercise. | Safety equipment, | | | human body and equipment. Working with | the human body and equipment. | | Demonstrate safe manual | Demonstrate safe manual handling or | load lifting aids, | | | | I | | | T. | |----------------------------|----------------------------------|---|----------------------------|----------------------|---------------| | energized | Working with | | handling or machinery use. | machinery use. | demonstrati | | equipment. | energized | | | | on items | | 5.6 Explain fire safety | equipment. | | Conduct role-play of an | Conduct role-play of | | | principles in the | | | incident and reporting. | an incident and | Incident | | workplace. | | | | reporting. | report | | - | Explain fire safety | | | | forms, role | | 5.7 Explain hazards in | principles in the | | | | cards | | confined spaces and the | workplace. | | | | | | preparation needed to | • | | | | Cleaning | | work in a confined | Explain hazards in | | | | tools, | | space. | confined spaces and the | | | | labeling | | | preparation needed to | | | | materials | | 5.8 Explain how to protect | work in a confined | | | | 1110000110010 | | the worker and others | space. | | | | | | when working in traffic | | | | | | | paths (walkways) | Explain how to protect | | | | | | 5.9 Explain safety | the worker and others | | | | | | measures related to | when working in traffic | | | | | | walkways, stairs, and | paths (walkways) | | | | | | floor openings | | | | | | | noor openings | | | | | | | 5.10 Explain the | | | | | | | importance of | Explain safety measures | | | | | | industrial housekeeping | related to walkways, | | | | | | by applying (5S) Total | stairs, and floor | | | | | | Productive | openings | | | | | | Management (TPM) | | | | | | | methodology | Explain the importance | | | | | | | of industrial | | | | | | • Sort | housekeeping by | | | | | | | applying (5S) Total | | | | | | | Productive Management | | | | | | | • Set | (TPM) methodology | | | | | |---------|-----------------------------------|-----------------------------|------------|---|-----------------------|-------------| | | • Shine | • Sort | | | | | | | Standardize and | • Set | | | 9 | | | | Sustain | • Shine | | | | | | | | Standardize and Sustain | | ., CAL | | | | General | Objective 6.0 Understand the | e concept of First Aid | I | 10) | l | | | 14-15 | 6.1 Define first aid | Explain first aid | Textbook | Perform first aid | Guide students to: | • Standard | | | 6 2 E1-i4hi | | Journals | | | first aid | | | 6.2 Explain the aims of First Aid | Explain the aims of First | Journars | Carry out CPR | Perform first aid and | box | | | riist Ald | Aid | Marker, | T1 .: C 1 | Carry out CPR | | | | 6.3 Explain the essentials | | Whiteboard | Identify and use first aid | Supervise handling | | | | of a first aid kit | Explain the essentials of | , | materials and tools. | and identification of | • CPR | | | | a first aid kit | | A | | accessorie | | | 6.4 Explain the mechanics | Explain the mechanics | Projector, | Apply appropriate procedures for treating | kit components. | s. | | | of injury | of injury | Computer | minor bleeding and | | • First aid | | | | of injury | health and | wounds. | | kits, | | | 6.5 Explain the priorities of | Explain the priorities of | safety | wounds. | Demonstrate | checklists | | | treatment | treatment | policy | Immobilize limbs in cases | immobilization | | | | 6.6 Explain Resuscitation | | F - 22-3 | of suspected fractures or | techniques using | | | | Cardiopulmonary | Explain Resuscitation | | sprains. | splints or slings. | | | | Resuscitation | Cardiopulmonar | | | 1 | • Gauze, | | | (CPR) | y Resuscitation | | Perform abdominal thrusts | | gloves, | | | Resuscitation for | (CPR) | | for choking victims (adults | | fake | | | babies and children | Resuscitation for | | and children). | Demonstrate and | wounds, | | Resuscitation with | babies and | | | supervise Heimlich | antiseptic | |--|--------------------------------------|---|------|----------------------|--------------| | chest compressions | children | | | technique on | | | only | Resuscitation | | . • | training manikins. | | | hygiene during | with chest | | | | | | resuscitation | compressions | | | Organize mock | • Splints, | | 6.7 Explain the main | only | | | emergency drills and | bandages, | | causes of | hygiene during | | | evaluate student | mannequin | | unconsciousness in a | resuscitation | | | responses. | S | | casualty | Explain the main causes | | | | | | | of unconsciousness in a | | | | | | 6.8 Explain first aid | casualty | | | | Choking | | practices for the | | | | | manikins, | | following conditions; | Explain first aid | | ·VII | | instruction | | • Asthma | practices for the | | | | al posters. | | emergencies | following conditions; | | | | ar posters. | | Anaphylaxis | • Asthma | | | | | | • Burns | emergencies | 0 | | | | | Choking | Anaphylaxis | | | | • CPR | | Fainting | Burns | | | | manikins, | | Hyperventilation | Choking | | | | AED | | Diabetic | • Fainting | | | | trainer (if | | emergencies | Hyperventilation | | | | available) | | External bleeding | • Diabetic | | | | | | and severe trauma | emergencies | | | | | | Environmental | External | | | | | | emergencies | bleeding and | | | | • Burn kits, | | Heart Attack | severe trauma | | | | water | | Poisoning | Environmental | | | | basins, | | Neck, head and | emergencies | | | | dressings | | spinal injuries | Heart Attack | | | | | | Stroke | Poisoning | | | | | | | | 1 | | | 1 | | Seizure | Neck, head and | | Simulation | |---------|-----------------|-------|------------| | | spinal injuries | | space, | | | • Stroke | , 10' | props, | | | Seizure | | assessment | | | | | sheets. | | | | | | **ASSESSMENT:** The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will take 10% of the total score, while the remaining 30% will be for the end of the semester examination score # VEAR ONE, SEMESTER TWO # **Electrical Power I** | PROGRAMME: NATIONAL DIPLOMA | IN ELECTRICAL AND ELECTRONICS | ENGINEERING TECHNOLOGY | |----------------------------------|-------------------------------|------------------------| | COURSE TITLE: Electrical Power I | COURSE CODE: EEC 121 | CONTACT HOURS: 3 | | | CREDIT UNIT: 2 | THEORETICAL: 1 | | VEAR· I SEMESTER· II | PRE-REQUISITE: | PRACTICAL: 2 | **GOAL**. This course is designed to acquaint the students with the knowledge and skills of the principles of generation, transmission and distribution of electrical energy to consumers.
GENERAL OBJECTIVES: On completion of this course the students should be able to: - 1.0: Understand the principles of generation and transmission of electrical energy - 2.0 Understand the basic principles of distribution systems - 3.0 Understand the basic principles of protection in power systems. - 4.0: Understand types of insulators and support structures | PROGRAMME: NATIONAL DIPLOMA IN F | ELECTRICAL AND ELECTRONICS ENGINE | ERING TECHNOLOGY | |---|-----------------------------------|------------------| | COURSE TITLE: Electrical Power I | COURSE CODE: EEC 121 | CONTACT HOURS: 3 | | | CREDIT UNIT: 2 | THEORETICAL: 1 | | YEAR: I SEMESTER: II | PRE-REQUISITE: | PRACTICAL: 2 | ## COURSE SPECIFICATION: THEORETICAL AND PRACTICAL **GOAL**: This course is designed to acquaint the students with the knowledge and skills of the principles of generation, transmission and distribution of electrical energy to consumers. General Objective 1.0: Understand the principles of generation and transmission of electrical energy. | | <u> </u> | ne principles of generation and | ı transımssion | | | | |-------|------------------------------------|---------------------------------------|----------------|-------------------------|----------------------|----------------| | T | HEORETICAL CONTEN | T | | PRACTICAL CONTE | NT | | | Week | Specific Learning | Teachers' Activities | Resources | Specific Learning | Teachers' | Evaluation | | | Outcome | | | Outcome | Activities | | | | 1.1 Define power plant. | Explain power plant. | Textbooks | | Guide to students: | Drawing | | | | | Journals | Organize Industrial | Organize | materials | | 1 – 3 | 1.2 Explain generation | Explain generation system | Whiteboard | visits to observe the | Industrial visits to | | | | system | | Marker | layout of Generation, | observe the layout | Transmission | | | | Explain the layout of: | Charts | Transmission and | of Generation, | and | | | 1.3 Explain the layout of: | Steam plant | Animations | Distribution of power | Transmission and | distribution | | | Steam plant | Diesel plant | Computer | systems. | Distribution of | line trainers' | | | Diesel plant | Gas plant | Projector | | power systems. | short and | | | Gas plant | Hydro power plant | | | | medium | | | Hydro power | Solar and wind | | | Draw the layout | transmission | | | plant | plant | | Draw the layout of | of Steam plant, | line model | | | Solar and wind | V) | | Steam plant, Diesel | Diesel plant, Gas | | | | plant | · · | | plant, Gas plant, Solar | plant, Solar and | Conductors | | | | | | and wind plant. | wind plant. | | | | 1.4 Explain the general | Explain the generation, | | | | | | | layout for the | transmission and distribution | | | | | | | generation | of electrical power systems. | | | Draw the layout | | |---|----------------------------|-------------------------------|----------|--------------------------|------------------|---| | | transmission and | | | Draw the layout of | of generation, | | | | distribution of | | | generation, transmission | transmission and | | | | electrical energy. | | | and distribution of | distribution of | | | | | Explain the differences | | electrical power | electrical power | | | | 1.5 Differentiate between | between transmission and | | systems. | systems. | | | | transmission and | distribution networks. | | | | | | | distribution networks. | | | | Draw the diagram | | | | | Explain the voltage levels | | | of generating | | | | 1.6 State the voltage | of generating station, | | Draw the diagram of | station, | | | | levels of generating | transmission and | | generating station, | transmission and | | | | station, transmission | distribution networks. | | transmission and | distribution | | | | and distribution | | | distribution networks | networks with | | | | networks. | Explain the short and | | with voltage levels. | voltage levels. | | | | | medium transmission lines | | | | | | | 1.7 Distinguish between | | — | | | | | | short and medium | | | | | | | | transmission lines. | Explain the principles of | , | | | | | | | power protection schemes. | | | | | | | 1.8 Explain the principles | \circ | | | | | | | of power protection | | | | | | | | schemes. | Discuss the types and sizes | | | | | | | | of conductors used for | | | | | | | 1.9 Explain the types and | transmission, distribution | | | | | | | sizes of conductors | and utilization of electrical | | | | | | | used for transmission. | power. | | | | | | | distribution and | | | | | | | | utilization of | | | | | | | L | | | | | | 1 | | | T | I | T | | | | |-----------|---|---|---------------|---------------------------|--------------------|--------------| | | electrical power | Explain how to determine | | | | | | | | the short transmission line | | | CY | | | | 1.10 Explain how to | parameters. | | | | | | | determine the short transmission line parameters. | Explain the construction of underground cables. | | | 3 | | | | 1.11 Explain the | | | | | | | | construction of underground cables. | Explain how to solve problems involving short | | MICALEI | | | | | 1.12 Explain how to | transmission lines. | | | | | | | solve problems | | | | | | | | involving short | | | | | | | | transmission lines. | | | | | | | General (| Objective 2.0: Understand | the basic principles of distrib | ution systems | | | | | | 2.1 Explain distribution | Explain distribution | Textbooks | Identify the basic | Guide students to: | Distributors | | 7 – 9 | system networks | system networks | Journals | components of | Identify the basic | | | | | | Whiteboard | distribution systems | components of | Feeders and | | | 2.2 Explain the difference | Explain the difference | Marker | | distribution | protection | | | between distributors | between distributors and | Charts | | systems | devices. | | | and feeders | feeders | Animations | Determine balancing | | | | | | | Computer | situations of connected | Determine | Paper | | | 2.3 Describe the basic | Explain the basic | Projector | grid to distribution | balancing | | | | components of | components of distribution | | network to ensure | situations of | Calculators | | | distribution systems | systems | | power and load demand | connected grid to | | | | | | | are equal via calculation | distribution | | | | 2.4 Explain how to solve | Explain how to solve the | | | network to ensure | | | | problems involving | problems involving | | | power and load | | | | volto ao duoma in | voltono duona in | | | dantand are agual | | |---------|------------------------------------|---------------------------------|----------------|-----------------------------|----------------------|-----------------| | | voltage drops in | voltage drops in | | | demand are equal | | | | simple distribution | distribution systems | | | via calculation | | | | systems. | | | | | | | | | | | | | | | | 2.5 Describe the | Explain the principles of | | | | | | | principles of | protection | | | | | | | protection in | in distribution system | | | | | | | distribution system | | | | | | | General | Objective 3.0: Understand t | he basic principles of protecti | on in power sy | stems | | | | | 3.1 Define a fuse | Explain a fuse | Textbooks | | Guide students to: | Fuse | | 10 -13 | | | Journals 🔪 | Identify the parts a | Identify the parts | | | | 3.2 Describe the parts of a | Describe the parts of a | Whiteboard | fuse. | a fuse. | Isolator | | | fuse. | fuse. | Marker | | Demonstrate the | | | | 3.3 Explain the purpose of | | Charts | Demonstrate the | function of a fuse. | Circuit breaker | | | a fuse. | Explain the purpose of a | Animations | function of a fuse. | | | | | | fuse. | Computer | | Identify the | Video clips | | | 3.4 Define fusing | | Projector | Identify the moulded | moulded case circuit | • | | | currents, current | Explain fusing currents | , , | case circuit breaker. | breaker. | | | | rating and fusing | current rating and fusing | | | | | | | factor. | factor. | | Demonstrate the function | Demonstrate the | | | | | | | of an isolator. | function of an | | | | 3.5 Describe the moulded | Explain the moulded case | | | isolator. | | | | case circuit breaker. | of a circuit breaker. | | | | | | | | V | | Identify the difference | Identify the | | | | 3.6 Define the | Explain the interruption | | between a circuit | difference | | | | interruption capacity | capacity of a circuit | | breaker and an isolator | between a circuit | | | | of a circuit breaker | breaker | | STORIGHT WITH WITH ISOTATOL | breaker and an | | | | of a circuit breaker | oreaner | | | isolator | | | | | | | | 15014101 | | | | | T | ı | | | | |---------|-------------------------------------|--------------------------------|------------|----------------------------|--------------------|--------------| | | 3.7 Define an isolator. | Explain an isolator. | | | CA | | | | 3.8 Explain the difference | | | | | | | | between a circuit | Explain the difference | | | | | | | breaker and an | between a circuit breaker | | | | | | | isolator | and an isolator | | | | | | General | Objective 4.0: Understand ty | ypes of insulators and support | structures | | | | | | 1.1 Define insulator. | Explain insulator. | Textbooks | Identify types of | Guide students to: | Post type | | 14 -15 | | | Journals | insulators. | Identify types of | | | | 1.2 Describe with the aid | Explain with the aid of | Whiteboard | | insulators. | Pin type and | | | of diagrams types of | diagrams types of | Marker 🔪 | Demonstrate the | | shackle ring | | | insulators | insulators | Charts | applications of | Demonstrate the | insulators | | | Post
type | Post type | Animations | insulators in distribution | applications of | | | | • Pin type | • Pin type | Computer | network | insulators in | | | | Shackle ring, etc. | • Shackle ring, etc. | Projector | | distribution | | | | | | } | | network | | | | 1.3 State the applications | | | | | | | | of the insulators in 4.2 | Explain the applications of | | | | | | | 01 1220 2220 2220 222 222 222 | the insulators in 4.2 | | | | | | | 1.4 Describe types of | the institutors in 1.2 | | | | | | | insulating materials | Explain types of insulating | | | | | | | and their applications. | materials and their | | | | | | | and then applications. | applications. | | | | | | | 1.5 Describe support | принатонь. | | | | | | | structures: | Explain support structures: | | | | | | | | | | | | | | | Wooden (Treated) | Wooden (Treated) | | | | | | | • Concrete Steel | • Concrete | | | | | | | (Galvanized) | | | | | | | Steel (Galvanized) | | | |--------------------|--|--| **ASSESSMENT:** The continuous assessment; tests and quizzes will be awarded 60% of the total score. The end of Semester Examination will make up for the remaining 40% of the total score. ### **Electrical Machine I** | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | |--|----------------|------------------|--|--|--|--| | COURSE TITLE: Electrical Machine I | CODE: EEC 122 | CONTACT HOURS: 3 | | | | | | | CREDIT UNIT: 2 | THEORETICAL: 1 | | | | | | YEAR: I SEMESTER: II | PRE-REQUISITE: | PRACTICAL: 2 | | | | | **GOAL:** This course is designed to equip the student with the knowledge and skills of the principles of operations, construction and maintenance of electrical machines GENERAL OBJECTIVES: At the end of the course the student should be able to: - 1.0 Understand the concept of magnetism - 2.0 Understand the basic principle of DC Generator - 3.0 Understand the basic principle of DC Motor - 4.0 Understand the principle of Single-phase Induction Motor PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING COURSE TITLE: Electrical Machine I CREDIT UNIT: 2 THEORETICAL: 1 YEAR: I SEMESTER: II PRE-REQUISITE: PRACTICAL: 2 #### COURSE SPECIFICATION: THEORETICAL AND PRACTICAL **GOAL:** This course is designed to equip student with the knowledge of the principles of operations, construction and maintenance of electrical machines General Objective 1.0: Understand the concept of magnetism | | Objective 1.0: Understand th | e concept of magnetism | | | | | |---------------------|------------------------------|-----------------------------|-------------------|---------------------|-----------------------------|----------------| | THEORETICAL CONTENT | | | PRAČTICAL CONTENT | | | | | Week | Specific Learning | Teachers' Activities | Resources | Specific Learning | Teachers' Activities | Resources | | | Outcome | | | Outcome | | | | | 1.1 Explain Magnetism. | Explain Magnetism. | Textbooks | | Guide the student to: | Magnet | | 1 | | | Journals | Determine direction | Determine direction of | Iron particles | | | 1.2 Explain | Explain | Whiteboard | of magnetic field. | magnetic field. | | | | electromagnetic fields | electromagnetic fields | Marker | | | Video clips | | | | | Charts | | | | | | 1.3 Explain | Explain | Animations | | | | | | electromagnetic | electromagnetic | Computer | | | | | | induction | induction | Projector | | | | | | | 00 | General | Objective 2.0: Understand the | ne basic principles of DC | Generator | | | | |---------|--------------------------------------|---------------------------|--------------|---------------------|--------------------------|--------------| | | 2.1 Explain basic | Explain basic | Textbooks | | Guide students to: | DC generator | | 2 - 4 | principles of a DC | principles of a DC | Journals | Disassemble and | Disassemble and | | | | Generator | Generator | Whiteboard | assemble a DC | assemble a DC | Separately | | | | | Marker | Generator. | Generator. | excited DC | | | 2.2 Explain construction | Explain construction | Charts | | | generator | | | of a DC Generator | of a DC Generator | Animations | Determine a DC | • | | | | | | Computer | Generator terminal. | Determine a DC | Voltmeter | | | 2.3 Describe armature | Describe armature | Projector | Determine the | Generator terminal. | Ammeter | | | reaction and emf | reaction and emf | | characteristics of | Determine the | | | | equations. | equations. | | separately excited | characteristics of | Voltage | | | | | . (| DC Generator. | separately excited DC | source | | | 2.4 Explain classification | Explain classification | | O' | Generator. | | | | of generators. | of generators. | | Perform an | | | | | | | | experiment to show | Perform an experiment | | | | 2.5 Describe Voltage | Explain Voltage | 1 /- | the relationship | to show the relationship | | | | regulation | regulation | | between armature | between armature | | | | | | | voltage and load | voltage and load current | | | | 2.6 Explain generator | Explain generator | | current | | | | | power losses. | power losses. | | | | | | General | Objective 3.0: Understand the | | lotor | | | | | | 3.1 Explain DC motor | Explain DC motor | Textbooks | | Guide the students to: | DC motor | | | | | Journals | Interpret a Motor | Interpret a Motor name | | | | 3.2 Describe operational | Explain the operational | Whiteboard | name plate | plate | Sample | | 5 -9 | principle of a DC motor | principle of a DC | Marker | | | motor name | | | | motor | Charts | Conduct an | Conduct an experiment | plate | | | 3.3 Explain the | Explain the | Animations | experiment on DC | on DC Shunt motor | | | | construction of DC | construction of DC | Computer | Shunt motor | Characteristics. | Series motor | | | motor. | motor. | Projector | Characteristics. | | | |-----------|--------------------------------------|-------------------------|------------|-----------------------|-------------------------|---------------| | | | | | | Carry out experiment on | Shunt motor | | | 3.4 State Characteristics of | Explain Characteristics | | Carry out experiment | DC Series motor | | | | DC Motor. | of DC Motor. | | on DC Series motor | Characteristics. | Compound | | | | | | Characteristics. | | motor | | | 3.5 Outline starting | Explain starting | | | Perform an experiment | relay | | | methods of DC Motor. | methods of DC | | Perform an | on DC Compound motor | | | | | Motor. | | experiment on DC | Characteristics. | | | | 3.6 Describe reversal of | | | Compound motor | | | | | rotation of a DC | Explain reversal of | | Characteristics. | Carry out an experiment | | | | motor | rotation of a DC motor | | | on starting DC motor | | | | | | .(| Carry out an | using a relay | | | | | Explain the procedure | | experiment on | | | | | _ | for the Inspection and | | starting DC motor | | | | | 1 | maintenance of DC | | using a relay | | | | | | Motors | 1/- | | | | | | Motors | | • | | | | | General C | Objective 4.0: Understand the | | | tion Motor | | | | | 3.1 Explain a single | Explain a single phase | Textbooks | | Guide the students to: | Split phase | | | phase induction motor | induction motor | Journals | Perform experiment | Perform experiment on | induction | | | | | Whiteboard | on the Characteristic | the Characteristic of | motor | | 10 - 15 | 3.2 Describe operational | Describe operational | Marker | of Split phase | Split phase induction | | | | principle of a Single | principle of a Single | Charts | induction motor. | motor. | Capacitor | | | Phase induction | Phase induction motor | Animations | | | Start motor, | | | motor | | Computer | Carry out experiment | | | | | | Explain the | Projector | on Characteristic of | Carry out experiment on | Capacitor run | | | 3.3 Explain the | construction of a | | Capacitor Start | Characteristic of | motor | | | construction of a | Single Phase | | motor and Capacitor | Capacitor Start motor | | | Single Phase | induction motor | run motor | and Capacitor run motor | Single-phase | |---------------------------|----------------------|----------------------|-------------------------|--------------| | induction motor | | | | induction | | | Explain types of | Inspect and maintain | . 10" | motor | | | single-phase | a | Inspect and maintain a | | | 3.4 Describe types of | Induction motor. | Motor | Motor | | | single-phase | | | | | | Induction motor. | Explain motor speed | Perform | Perform troubleshooting | | | | of asynchronous | troubleshooting and | and repair of AC motors | | | 3.5 Describe motor speed | motor | repair of AC motors | | | | of asynchronous | | | | | | motor | Explain power losses | | | | | | and efficiency | | | | | 4.6 Describe power losses | | | | | | and efficiency. | | | | | **ASSESSMENT:** Assessment: The practical class will be awarded 60% of the total score. The continuous assessments, tests and quizzes will be 10% the total score, while the remaining 30% will be for the end of semester examination. ### **ELECTRONICS I** | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | |--| |--| | COURSE TITLE: ELECTRONICS I | COURSE CODE: EEC 123 | CONTACT HOURS: 3 | |-----------------------------|----------------------|------------------| | | CREDIT UNIT: 2 | THEORETICAL: 1 | | YEAR: I SEMESTER: II | PRE-REQUISITE: | PRACTICAL: 2 | GOAL: This course is designed to equip the student with the knowledge and skills of passive and active electronic components and their applications GENERAL OBJECTIVES: At the end of the course the student should be able to: - 1.0 Understand the concept of passive components - 2.0
Understand the concept of active components - 3.0 Understand the characteristics of a PN Junction and Zener Diode - 4.0 Understand application of Bipolar Junction Transistor - 5.0 Understand the basic structure and application of thyristor | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICA | 45 | | | |---|----------------------|--------|-------------| | COURSE TITLE: ELECTRONICS I | COURSE CODE: EEC 123 | CONTAC | CT HOURS: 3 | | | CREDIT UNIT: 2 | THEORE | ETICAL: 1 | | YEAR: I SEMESTER: II | PRE-REQUISITE: | PRACTI | CAL: 2 | | COURSE CRECIFICATION, THEORETICAL AND DE | ACTICAL | | | #### COURSE SPECIFICATION: THEORETICAL AND PRACTICAL GOAL: This course is designed to equip the student with the knowledge and skills of passive and active electronic components and their applications General Objective 1.0: Understand the concept of passive components | THEOR | THEORETICAL CONTENT | | | PRACTICAL CONTENT | | | | |-------|--------------------------------|--------------------------------|------------|--------------------------|-----------------------------|------------|--| | Week | Specific Learning | Teachers' Activities | Resources | Specific Learning | Teachers' Activities | Resources | | | | Outcome | | | Outcome | | | | | 1-2 | 1.1 Define matter and | Explain matter and | Textbook | | Guide students to: | Breadboard | | | | basic structure of | basic structure of Atom. | Journal | Construct a simple | Construct a simple | | | | | Atom. | | Chart | electronic circuit | electronic circuit | Resistor | | | | | | Animations | consisting of two | consisting of two | | | | | 1.2 Define passive | Explain passive | Computer | resistors in series as a | resistors in series as a | DC Power | | | | electronic | electronic components: | Projector | voltage divider | voltage divider | source | | | | components: | • Resistors | Whiteboard | | | | | | | Resistors | Capacitors | Marker | | | Multimeter | | | | Capacitors | Inductors | | | | | | | | Inductors | | | | | | | | | | Explain color codes in | | | | | | | | 1.3 Explain color codes | accordance with EIA | | | | | | | | in accordance with | standards | | | | | | | | EIA standards | | | | | | | | | 1.4 Explain variable | Explain variable | | | | | | | | 1.4 Explain variable | resistor: | | | | | | | | resistor: | • Potentiometer | | | | | |-----------|-------------------------------------|------------------------------|------------|--------------------------|------------------------|---------------| | | Potentiomet | Rheostat | | | | | | | er | | | | | | | | Rheostat | | | | | | | General C | Objective 2.0: Understand th | e concept of active compo | nents | | J | | | | 2.1 Define a | Define a semiconductor | Textbook | | Guide students to: | Semiconduct | | 3 – 4 | semiconductor | | Journal | Identify Semiconductor | Identify Semiconductor | or | | | | Explain matter and | Chart | components with their | components with their | components | | | 2.2 Explain matter and | basic structure of Atom. | Animations | circuit symbol. | circuit symbol. | | | | basic structure of | | Computer | (1) | | Breadboard | | | Atom. | Describe electrons and | Projector | Carry out an experiment | Carry out an | | | | | holes as carriers of | Whiteboard | on breadboard to | experiment on | Sample | | | 2.3 Explain electrons and | electric charges. | Marker | implement circuit from | breadboard to | schematic | | | holes as carriers of | | | the schematic diagram. | implement circuit from | diagram | | | electric charges. | Describe energy levels | \circ | | the schematic diagram. | | | | | in material, Valence and | | Perform experiment on | | Soldering | | | 2.4 Describe energy levels | Conduction |) | how to solder and | Perform experiment on | iron | | | in material, Valence | | | unsolder components on | | | | | and Conduction | Describe Conductors, | | a printed wiring circuit | unsolder components | Printed | | | | Insulators and | | board | on a printed wiring | wiring | | | 2.5 Describe Conductors, | Semiconductors. | | | circuit board | circuit board | | | Insulators and | | | Demonstrate soldering | | | | | Semiconductors. | Describe Conduction in | | techniques | Demonstrate soldering | Power | | | | Metals and Gas. | | | techniques | source | | | 2.6 Describe Conduction in | | | | | Soldering | | | Metals and Gas. | Describe the concept of | | | | Lead | | | | doping in | | | | | | | 2.7 Describe the concept of | semiconductors | | | | Soldering | | | | T | 1 | T | ı | | 1 | |---------|---------------------------|-----------------------------|------------------|--------------|---|------------|-------| | | doping in | | | | | | paste | | | semiconductors | | | | | | Suck | | | | Explain Intrinsic and | | | |) ' | | | | 2.8 Explain Intrinsic and | Extrinsic | | | | | | | | Extrinsic | Semiconductor | | | | | | | | Semiconductor | | | | | | | | General | Objective 3.0: Understand | characteristics of a PN Jur | nction and Zener | Diode | | | | | | 3.1 Define a PN junction | Explain a PN junction | Textbook | | | | | | 5 -7 | Diode. | Diode. | Journal | | | | | | | | | Chart | | | | | | | 3.2 Define Zener Diode. | Explain Zener Diode. | Animations | 112. | | | | | | | 1 | Computer | X / , | | | | | | 3.3 Describe Avalanche | Explain Avalanche | Projector | | | | | | | Breakdown (Zener | Breakdown (Zener | Whiteboard | | | | | | | diode). | diode). | Marker | | | | | | | <i>310 33)</i> . | | | | | | | | | 3.4 Describe applications | Explain applications of | | | | | | | | of Semiconductor | Semiconductor diode | | | | | | | | diode | | | | | | | | | | Explain Voltage | | | | | | | | 3.5 Describe Voltage | Stabilisation and | | | | | | | | Stabilisation and | Reference. | | | | | | | | Reference. | 20 , | | | | | | | | | Explain Voltage | | | | | | | | 3.6 Describe Voltage | Shifting. | | | | | | | | Shifting. | | | | | | | | | | | | | | | | | | 3.7 Define transistor | Define transistor | | | | | | | | 3.8 Explain the applications of transistor: Amplification Switching 3.9 Explain transistor biasing | Explain the applications of transistor: • Amplification • Switching Explain transistor biasing | | | | | |-----------|---|--|------------------|--------------------------|------------------------|--------------| | | 3.10 Explain transistor | Explain transistor | .(| | | | | | saturation and cut-off | saturation and cut-off | | | | | | General (| Objective 4.0: Understand the | ne application of Bipolar Ju | ınction Transist | or | | | | | 4.1 Describe the Bipolar | Describe the Bipolar | Textbook | | Guide students to: | Breadboard | | | Junction Transistor. | Junction Transistor. | Journal | Conduct an experiment | Conduct an | | | | | | Chart | on measurement of | experiment on | Oscilloscope | | | 4.2 Explain the working | Explain the working | Animations | direct current in a | measurement of direct | | | | principle of Bipolar | principle of Bipolar | Computer | circuit. | current in a circuit. | Electrolytic | | | Junction Transistor | Junction Transistor | Projector | | | capacitor | | 8 - 11 | using 2 diode model | using 2 diode model | Whiteboard | Carry out experiment to | Carry out experiment | | | | | | Marker | measure the effect of | to measure the effect | Small | | | 4.3 Describe Common | Explain Common | | resistance and observe | of resistance and | voltage | | | Emitter | Emitter Configuration | | the effect of voltage in | observe the effect of | transformers | | | Configuration | Voltage gain | | controlling current in a | voltage in controlling | | | | Voltage gain | Current Gain | | circuit. | current in a circuit. | Resistors | | | Current Gain | • Power Gain. | | | | | | • Power Gain. | | Perform an experiment | Perform an experiment | |----------------------------------|----------------------------------|-------------------------|-------------------------| | | Explain Common | to observe and measure | to observe and | | 4.4 Describe Common | Collector Configuration | input and output | measure input and | | Collector | Voltage gain | waveforms of a full – | output waveforms of a | | | • Current gain | wave rectifier | full – wave rectifier | | Configuration | • Power gain | | | | • Voltage gain | | Carry out experiment to | Carry out experiment | | • Current gain | Explain Common Base | determine the time | to determine the time | | Power gain | Configuration | constant of a Capacitor | constant of a Capacitor | | | Voltage gain | | | | 4.5 Describe Common | • Current gain | Perform an experiment | Perform an experiment | | Base Configuration | Power gain | to show Zener diode as | to show Zener diode as | | Voltage gain | 1 ower gam | a Voltage regulator. | a Voltage regulator. | | Current gain | Describe Field Effect. | | | | Power gain | Explain Basic FET | | | | 4.6 Describe Field | Operation | Carry out experiment | Carry out experiment | | Effect. | / () | to show Static | to show Static | | | Explain Maximum | Characteristic of a PNP | Characteristic of a | | 4.7 Explain Basic FET | Transistor Rating. | Transistor in the | PNP Transistor in the | | Operation | | Common base | Common base | | 4.8 Define Maximum | Explain Waveform | configuration | configuration | | | Distortion | | | | Transistor Rating. | VO, | Test Bipolar Junction | Test
Bipolar Junction | | 4.0 Describe Wassefram | Explain the importance | Transistor. | Transistor. | | 4.9 Describe Waveform | of input Resistance at | | | | Distortion | Transistor Base. | Test PN Junction diode | Test PN Junction | | | | with Multimeter | diode with Multimeter | | | | | | | | 4.10 Describe the | Explain: | | | | | |-----------|----------------------------------|------------------------------|------------------|-------------------------|-----------------------|--------------| | | importance of input | Base Bias | | | | | | | Resistance at | Emitter Bias | | | | | | | Transistor Base. | G 11 | | | | | | | Transistor Base. | | | | | | | | 4.11 Describe: | feedback bias. | | MICALLI | | | | | Base Bias | Explain Q – Point | | | | | | | Emitter Bias | Stability over | | | | | | | Collector | temperature. | | | | | | | feedback bias. | | | | | | | | | | | | | | | | 4.12 Define Q – Point | | . (| | | | | | Stability over | | |) | | | | | temperature. | | | | | | | General (| Objective 5.0: Understand the | he basic structure and appli | cation of Thyris | stor | | | | 12 -15 | 5.1 Explain thyristor | Explain thyristor | Textbook | | Guide students to: | Thyristor | | | | | Journal | Perform experiment to | Perform experiment to | | | | 5.2 Explain two transistor | Explain two transistor | Chart | determine the | determine the | IGBT | | | model of a thyristor | model of a thyristor | Animations | Characteristic of | Characteristic of | | | | | .07 | Computer | thyristors | thyristors | SCR | | | 5.3 Describe Forward | Explain Forward break | Projector | | | | | | break over voltage | over voltage and | Whiteboard | | | | | | and Switching | Switching Current | Marker | Carry out experiment to | Carry out experiment | Solid state | | | Current. | | | show Static | to show Static | relay | | | | Explain working | | Characteristic | Characteristic | | | | 5.4 Describe working | principles of the | | Thyristors | Thyristors | Breadboard | | | principles of the | thyristor | | | | | | | thyristor | | | | | Oscilloscope | | | | | Carry out experiment | Carry out experiment | | |----------------------------|--------------------------|------------|--------------------------|--------------------------|--| | 5.5 Describe Holding | Explain Holding | | to investigate thyristor | to investigate thyristor | | | Current and Switching | Current and Switching | | switching | switching | | | Current. | Current. | | | | | | 5.6 Describe the Silicon | | | | | | | Controlled Rectifier | Explain the Silicon | | | | | | (SCR) | Controlled Rectifier | | | | | | | (SCR) | | | | | | 5.7 Describe the insulated | | | | | | | gate bipolar transistor | Explain the insulated | | | | | | (IGBT) | gate bipolar transistor | | | | | | | (IGBT) | |) * | | | | 5.8 Describe Turning ON | | | | | | | the SCR | Explain Turning ON the | | | | | | | SCR | | | | | | 5.9 Describe Half-wave | |) ` | | | | | Controlled | Explain Half-wave | | | | | | rectification | Controlled rectification | | | | | | | QV | | | | | | 5.10 Describe full- | Explain full-wave | | | | | | wave Controlled | Controlled rectification | | | | | | rectification | | | | | | | 5.11 D 1 | Explain Lighting | | | | | | 5.11 Describe | System for Power | | | | | | Lighting System for | Interruption | | | | | | Power Interruption | | | | | | | | | | | | | | 5.12 Describe an | Explain an overvoltage | | |------------------------|------------------------|--| | overvoltage protection | protection circuit | | | circuit | | | | 5.13 Describe DIAC | Explain DIAC | | | 5.14 Explain the | Explain the switching | | | switching function of | function of DIAC | | | DIAC | | | | | | | | 5.15 Outline the | Explain the Advantages | | | Advantages of the | of the Thyristor. | | | Thyristor. | | | **ASSESSMENT:** Assessment: The practical class will be awarded 60% of the total score. The continuous assessments, tests and quizzes will be 10% the total score, while the remaining 30% will be for the end of semester examination. ## **Electrical Engineering Science II** | PROGRAMME: NATIONAL DIPLOMA IN ELECTR | RICAL AND ELECTRONICS ENGINEERING | G TE | CHNOLOGY | |---|-----------------------------------|----------|------------------| | COURSE TITLE: Electrical Engineering Science II | CODE: EEC 124 | | CONTACT HOURS: 3 | | | CREDIT UNIT: 3 | / | THEORETICAL: 1 | | YEAR: I SEMESTER: II | PRE-REQUISITE: EEC 114 | | PRACTICAL: 2 | GOAL: This course is designed to equip students with the knowledge of fundamentals of Alternating Current (AC) theory. GENERAL OBJECTIVES: On completion of this course, the student should be able to - 1.0 Understand the concepts of magnetism and magnetic circuits. - 2.0 Understand the concepts of electromagnetism and electromagnetic induction - 3.0 Understand the concepts of inductance and its applications. - 4.0 Understand the fundamentals of AC theory. | PROGRAMME: NATIONAL DIPLOMA IN IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | | |---|---|---------------------|--|--|--|--|--|--| | COURSE TITLE: Electrical Engineering Science II | COURSE CODE: EEC 124 | CONTACT HOURS: 3 | | | | | | | | | CREDIT UNIT: 3 | THEORETICAL: 1 | | | | | | | | YEAR: I SEMESTER: II | PRE-REQUISITE: EEC 114 | PRACTICAL: 2 | | | | | | | | COURSE SPECIFICATION: THEORETICAL AND | COURSE SPECIFICATION: THEORETICAL AND PRACTICAL | | | | | | | | GOAL: This course is designed to equip students with the knowledge of fundamentals of Alternating Current (AC) theory General Objective 1.0: Understand the concepts of magnetism and magnetic circuits. | | THEORETIC | CAL CONTENT | | PRACTICAL CONTENT | | | | |-------|--|---|------------|-----------------------|-------------------|------------|--| | Week | Specific Learning | Teachers' Activities | Resources | Specific Learning | Teachers' | Resources | | | | Outcome | | | Outcome | Activities | | | | 1 – 3 | 1.1 Explain: | Explain: | Textbooks | | Guide students | Magnetic | | | | Magnetic flux, | Magnetic flux, | Journals | Determine the B-H | to: Determine the | materials | | | | magnetic flux density | magnetic flux density | Whiteboard | curve for magnetic | B-H curve for | | | | | • Electro-motive force | Electro-motive force | Marker | material (Hysteresis | magnetic | Magnet | | | | Magnetomotive force | Magnetomotive force | Charts | curve) | material | | | | | Magnetic field strength, | Magnetic field | Animations | | (Hysteresis | Inductor | | | | • Reluctance, | strength, | Computer | Determine the | curve). | | | | | Permeability of free | Reluctance, | Projector | magnetic energy loss | | Voltmeter | | | | space (magnetic | Permeability of free | | in magnetic materials | Determine the | | | | | constant) | space (magnetic | | | magnetic energy | Ammeter | | | | Relative permeability. | constant) | | | loss in a | | | | | | Relative permeability. | | | magnetic | Flux meter | | | | | | | | material | | | | | 1.2 Explain the concept of | Explain the concept of | | | | Electronic | | | | Hysteresis and B-H | Hysteresis and B-H curve | | | | trainer | | | | curve | • | | | | | | | | Describe the symbols, units and relationships of terms in (1.1) above. Explain the electrical equivalent of magnetic circuits with or without air-gap. Explain the analogies between electrical and magnetic circuits. Explain how to solve simple magnetic circuit | Explain the symbols, units and relationships of terms in (1.1) above. Explain the electrical equivalent of magnetic circuits with or without air-gap. Explain the analogies between electrical and magnetic circuits. Explain how to solve simple magnetic circuit problems. | | | | | |---------
--|---|------------|----------------------|-------------------|-------------------------| | Company | problems. 1.7 Distinguish between soft and hard magnetic materials. | Distinguish between soft and hard magnetic materials | | | | | | 4 -8 | Objective 2.0: Understand the 2.1 Explain heating and | | Textbooks | gnetic induction | Guide student to: | Magnetia | | 4 -0 | magnetic effects on | Explain heating and magnetic effects on | Journals | Verify Faraday's law | Verify Faraday's | Magnetic material(para- | | | current carrying | current carrying conductor | Whiteboard | of electromagnetic | law of | magnetic | | | conductor | current carrying conductor | Marker | induction | electromagnetic | magnetie | | | John Market Comment of the o | Explain with aid of | Charts | inauction | induction | Diamagnetic | | | 40 | diagram the magnetic | Animations | | | and fero- | | 2 2 51-1 | £.11 1. | C | V: C - I! - 1 C | V- ∴C- I | | |---|---|-----------|-----------------------|-------------------|------------| | 2.2 Explain with aid of | fields around: | Computer | Verify Lenz's law of | Verify Lenz's law | magnetic) | | diagram the magnetic | Straight conductors | Projector | electromagnetic | of | | | fields around: | Adjacent parallel | • | induction. | electromagnetic | Magnet, | | Straight conductors | Conductors | | | induction. | Inductor | | Adjacent parallel | Solenoids. | | Determine the | | | | Conductors | | | inductance of a coil | Determine the | Voltmeter | | Solenoids. | | | | inductance of a | | | | Explain the force on a | | | coil. | Ammeter | | 2.3 Explain the force on a | current carrying conductor | | Determine energy loss | | Flux meter | | current carrying | in a magnetic field. | | in an inductor. | Determine | | | conductor in a magnetic | | | | energy loss in an | Electronic | | field. | State the direction of the | CX | | inductor. | trainers | | | force in (2.3) above. | | | | | | 2.4 State the direction of the | (=.0) | | | | | | force in (2.3) above. | | | | | | | (2.0) (2.1) | Derive the expression for | 2 | | | | | 2.5 Derive the expression for | the magnitude of the force | | | | | | the magnitude of the | in 2.4 above. | | | | | | force in 2.4 above. | Explain the concept of | | | | | | 10100 III 2.4 400 vc. | electromagnetic induction. | | | | | | 2.6 Explain the concept of | electromagnetic materion. | | | | | | electromagnetic | State Faraday's and Lenz's | | | | | | induction. | Laws of electromagnetic | | | | | | mauction. | induction. | | | | | | 2.7 State Faraday's and | muuchon. | | | | | | Lenz's Laws of | Derive the expressions for | | | | | | electromagnetic | the magnitude of Electro- | | | | | | | | | | | | | induction. | motive Force (EMF) | | | | | | | 2.10 Derive the | induced in a conductor or | | | | | |---------|--|---|---|--|---|---| | | expressions for the | a coil. | | | CV | | | | magnitude of Electro- | | | | | | | | motive Force (EMF) | Explain how to solve | | | J | | | | induced in a conductor | problems involving | | | | | | | or a coil. | electromagnetic induction | | | | | | | | and the magnitude of | | | | | | | 2.11 Explain how to | induced EMF. | | | | | | | solve problems | | | | | | | | involving | Explain the applications of | | | | | | | electromagnetic | electromagnetic induction. | | | | | | | induction and the | | CX | | | | | | magnitude of induced | | | | | | | | EMF. | | | | | | | | | | | | | | | | 2.10 State the applications | | — | | | | | | of electromagnetic | | | | | | | | induction. | | | | | | | General | Objective: 3.0 Understand th | e concepts of inductance and | its applications | | | | | 9-11 | 3.1 Define self and mutual | Define self and mutual | Textbooks | | Guide students | Magnetic | | | inductance and their | inductance and their | Journals | Determine the energy | to: Determine the | material (para- | | | symbols. | symbols. | Whiteboard | loss in an inductor. | energy loss in an | magnetic | | | | | Marker | | inductor. | | | | 3.2 Explain the expression | Explain the expression for | Charts | | | Diamagnetic | | | for the equivalent | the equivalent inductance | Animations | Determine the | Determine the | and fero- | | | inductance of | of inductances connected | Computer | equivalent inductance | equivalent | magnetic) | | | inductances connected in | in series and parallel. | Projector | of serial and parallel | inductance of | | | | series and parallel. | | | inductive circuits. | serial and parallel | Magnet | | | Objective: 3.0 Understand the 3.1 Define self and mutual inductance and their symbols. 3.2 Explain the expression for the equivalent inductance of inductances connected in | Define self and mutual inductance and their symbols. Explain the expression for the equivalent inductance of inductances connected | Textbooks Journals Whiteboard Marker Charts Animations Computer | loss in an inductor. Determine the equivalent inductance of serial and parallel | to: Determine the energy loss in an inductor. Determine the equivalent inductance of | material (para
magnetic
Diamagnetic
and fero-
magnetic) | | | | | | 1 | | , | |---------|-------------------------------|-------------------------------|----------------|-----------------------|---------------------|-----------------| | | | Explain the expression for | | | inductive circuits. | (neodymium) | | | 3.3 Explain the expression | the induced voltage across | | | CV | | | | for the induced voltage | an inductor. | | Determine the | Determine the | Inductor | | | across an inductor. | | | magnetic coupling in | magnetic | | | | | Explain the expression for | | a transformer | coupling in a | Voltmeter | | | 3.4 Explain the expression | mutual inductance in | | | transformer | | | | for mutual inductance in | coupled coils connected in | | | | Ammeter | | | coupled coils connected | series aiding or opposing. | | | | | | | in series aiding or | | | | | Flux meter | | | opposing. | Explain how to calculate | | | | Transformer | | | | the stored energy in an | | | | | | | 3.5 Explain how to calculate | inductor. | CX | | | Coil | | | the stored energy in an | | | | | | | | inductor. | | | | | Electronic | | | | Explain how to solve | | | | trainers | | | 3.6 Explain how to solve | problem involving series, | _ | | | | | | problem involving | parallel inductive circuits. | | | | | | | series, parallel inductive | V | | | | | | | circuits. | Explain using diagram the | | | | | | | | operation of the induction | | | | | | | 3.7 Explain using diagram | coiled in a car ignition | | | | | | | the operation of the | system | | | | | | | induction coiled in a car | 60 . | | | | | | | ignition system. | | | | | | | General | Objective 4.0: Understand the | e fundamentals of Alternating | Current (AC) T | heory | | | | 12- 15 | 4.1 Describe the production | Describe the production of | Textbooks | Determine the | Guide student to:
Magnetic			of an alternating EMF by	an alternating EMF by a	Journals	frequency, period and	Determine the	material (para-			a rotating coil in a	rotating coil in a magnetic	Whiteboard,	amplitude of a	frequency, period	magnetic										magnetic field.	field.	Marker	sinusoidal signal.	and amplitude of			--------------------------------------	-----------------------------------	------------	------------------------	------------------	--------------		magnetic field.	Tiora.	Charts	Sinusoraur signar.	a sinusoidal	Diamagnetic		4.2 Explain AC waveforms	Explain AC waveforms	Animations	Determine the series	signal.	and fero-		both to scale and not to	both to scale and not to	Computer	and parallel resonance	3	magnetic)		scale.	scale.	Projector	of an AC circuit.	Determine the							series and	Oscilloscope		4.3 Define:				parallel			 Root Mean Square 	Define:		Determine the	resonance of an	Signal		(RMS)	Root Mean Square		Quality-factor (Q-	AC circuit.	generator		 Instantaneous, 	(RMS)		factor) of series and				Average value	• Instantaneous,		parallel RLC circuits.	Determine the	Voltmeter		 Peak value 	 Average value 	.(``		Quality-factor			 Period 	 Peak value 			(Q-factor) of	Ammeter		• Frequency of an AC	• Period			series and			waveform.	• Frequency of an AC			parallel RLC	Resistor			waveform.			circuits	* 1		4.4 State the relationships					Inductor		between instantaneous	State the relationships				C		and peak values of a	between instantaneous				Capacitors		sinusoidal wave signals.	and peak values of a				Connecting			sinusoidal wave				cable		4.5 Explain how to solve	signals.				Cabic		problems involving (4.2 -					Electronic		4.4) above.	Explain how to solve				trainer.		A C Francis Is a read a sell	problems involving (4.2 -						4.6 Explain how to solve	4.4) above.						problems graphically on	Evaluia have to calve						AC circuits with	Explain how to solve						different combinations of	problems graphically on					----------------------------	----------------------------	----	--	--		resistance, inductance	AC circuits with different					and capacitance i.e. RLC	combinations of					circuits.	resistance, inductance and						capacitance i.e. RLC					4.6 Differentiate between	circuits.					series and parallel						resonances.							Differentiate between					4.7 Explain phase lag or	series and parallel					phase lead as applied to	resonances.					AC circuits.		CX										4.8 Explain the difference	Explain phase lag or phase					between single and 3-	lead as applied to AC					phase supply	circuits.											4.10 State the advantages	Explain the difference					and disadvantages of 3-	between single and 3-phase					phase supply and single	supply.					phase supply.							Explain the advantages						and disadvantages of 3-						phase supply and single						phase supply.										ASSESSMENT: The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will take 10% of the total score, while the remaining 30% will be for the end of semester examination score. # Electrical and Electronics measurement and Instrumentation	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY											--	----------------	---	----	--	------------------	--	--	--	--		COURSE TITLE: Electrical and Electronics	CODE: EEC 125				CONTACT HOURS: 4						measurement and Instrumentation	CREDIT UNIT: 2		-/		THEORETICAL: 1						YEAR: I SEMESTER: II	PRE-REQUISITE:	4			PRACTICAL: 3					GOAL: This course is designed to acquaint the students with the knowledge and skills of application of electrical/electronic instruments for laboratory and industrial measurements **GENERAL OBJECTIVES:** At the end of the course the student should be able to: - 1.0 Know electrical and electronic instruments. - 2.0 Understand error in measurement. - 3.0 Understand measurement instruments in electrical and electronics systems. - 4.0 Understand the working principles and constructions of measuring instruments	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICA	AL AND ELECTRONICS ENGINEE	RING		---	---	------------------		COURSE TITLE: Electrical and Electronics	COURSE CODE: EEC 125	CONTACT HOURS: 4		measurement and Instrumentation	CREDIT UNIT: 2	THEORETICAL: 1		YEAR: I SEMESTER: II	PRE-REQUISITE:	PRACTICAL: 3		COAT TILL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		**GOAL**: This course is designed to acquaint the students with the knowledge and skills of application of electrical/electronic instruments for laboratory and industrial measurements General Objective: 1.0: Know electrical and electronic instruments.		THEORETICA	L CONTENT		PRACTICAL CONTENT					------	---------------------------	------------------------------	------------	------------------------------	------------------------------	--------------	--		Week	Specific Learning	Teachers' Activities	Resources	Specific Learning	Teachers'	Resources				Outcome			Outcome	Activities					1.1 Explain commonly used	Explain commonly	Textbooks		Guide the Students	Digital			1-2	Electrical and Electronic	used Electrical and	Journals	Identify the	to:	Oscilloscope				Measurement	Electronic	Whiteboard	instruments listed	Identify the					Instruments:	Measurement	Marker	below:	instruments listed	Signal				Digital	Instruments:	Charts	 Digital 	below:	generator				multimeter	 Digital 	Animations	multimeter	 Digital 					Analogue	multimeter	Computer	 Analogue 	multimeter	d.c/a.c				multimeter	 Analogue 	Projector	multimeter	 Analogue 					Voltage tester	multimeter		• Voltage	multimeter	Power			Clamp meter	Voltage tester	tester	 Voltage tester 	supplies		-----------------------------------	----------------------------------	---------------------	------------------------------------	--------------		 Oscilloscope 	Clamp meter	Clamp meter	 Clamp meter 			 Insulation 	 Oscilloscope 	Oscilloscope	 Oscilloscope 	Probe		resistance	 Insulation 	Insulation	Insulation			tester (Megger)	resistance	resistance	resistance	Voltage		Tachometer	tester (Megger)	tester	tester (Megger)	testers		• Wattmeter	• Tachometer	(Megger)	 Tachometer 			Thermometer	• Wattmeter	Tachometer	 Wattmeter 	Clamp meters		 Frequency 	• Thermometer	Wattmeter	• Thermometer	F		Counters	• Frequency	Thermometer	 Frequency 	Frequency		Battery tester	Counters	Frequency	Counters	counter			Battery tester	Counters	 Battery tester 	Resistors		1.2 Explain the applications	Explain the	Battery tester		Resistors		of the instruments	applications of the		Demonstrate ohm's	Cables		listed in 1.1 above.	instruments listed in	Demonstrate	law using variable	Cables			1.1 above	ohm's law using	resistance and	Insulation		1.3 State the range of each		variable resistance	variable E.M.F	continuity		type of electrical and	Explain the range of	and variable		tester		electronics instruments.	each type of electrical	E.M.F					and electronics			Voltage			instruments			sources.		General Objective: 2.0 Understand	error in measurement	1										3-5	2.1 Define error in	Explain error in	Textbooks		Guide students to:	Capacitors		--------	------------------------------------	-------------------------	-----------------	-----------------------	---------------------	---------------			measurement	measurement	Journals	Demonstrate	Demonstrate						Whiteboard	practical examples	practical examples	Inductor			2.2 Explain types of errors	Explain types of	Marker	of error	of error				in measurement.	errors in	Charts			e.m.f sources				measurement.	Animations	Determine the					2.3 Explain the differences		Computer	resistivity of	Determine the	Voltmeter			between Random and	Explain the	Projector	materials	resistivity of	and ammeter			Static error in electrical	differences between			materials				measurement.	Random and Static		Verify Kirchhoff's						error in electrical		current and	Verify Kirchhoff's				2.3 Define Resistance.	measurement.		voltage law	current and voltage								law				2.4 State Kirchhoff's	Explain Resistance.		Demonstrate					current and voltage law.			superposition	Demonstrate					Explain Kirchhoff's	~	Theorem	superposition				2.5 State Superposition	current and voltage			Theorem				theorem.	law.								0,																																																												
Explain Superposition								theorem.						Genera	al Objective 3.0: Understand m	neasurement instruments	in electrical a	nd electronics system	S.			6-8	3.1 Explain the following:	Explain the	Textbooks	Demonstrate the	Guide students to:	Digital			Digital multimeter	following:	Journals	use of the	Demonstrate the use	multimeter			Analogue	• Digital	Whiteboard	following using	of the following				multimeter	multimeter	Marker	different circuits:	using different	Analogue			 Voltage tester 	Analogue	Charts	• Digital	circuits:	multimeter			Clamp meter	multimeter	Animations	multimeter	• Digital			• Oscilloscope • Voltage tester Computer • Analogue multimeter	Voltage tester		--	----------------		• Clamp meter Projector multimeter • Analogue			3.2 Explain the operating • Oscilloscope • Voltage tester multimeter	Clamp meter		principles measuring • Clamp meter Voltage tester			instruments Explain the operating • Oscilloscope Clamp meter	Oscilloscope		principles of Oscilloscope			3.3 Explain the different measuring Measure voltage			selector ranges on a instruments and current by			digital multimeter to be connecting			used as: Explain the different Multiplier and Measure voltage and	1		Ammeter selector ranges on a Shunt respectively. current by			(AC/DC) digital multimeter to connecting			Voltmeter. be used as Charge and Multiplier and			(AC/DC) • Ammeter discharge a Shunt respectively.			(AC/DC) capacitor, inductor			3.4 Explain how a • Voltmeter.			multiplier and Shunt (AC/DC) Calibrate and Charge and			can be used to increase measure with discharge a			the range of Voltmeter Explain how a multimeter. capacitor, inductor			and ammeter multiplier and Shunt			respectively. can be used to Measure direct			increase the range of current (d.c) Calibrate and			3.5 Explain how to Voltmeter and voltage in measure with			calculate the Values of ammeter respectively. experiments using multimeter			the multiplier and shunt multimeter			Explain how to Measure direct			calculate the Values Measure current (d.c) voltage			of the multiplier and alternating current in experiments using	5			T	T	ı					--------	----------------------------------	-------------------------------	------------	--------------------------------	--------------------------------	---------------				shunt.		(a.c) voltage in	multimeter							experiments using	CY							digital multimeter	Measure alternating								current (a.c) voltage							Calculate the	in experiments using							Values of the	digital multimeter							multiplier and	*							shunt.								رال). ال	Calculate the Values							Calibrate a moving	of the multiplier and							coil instrument	shunt.																Calibrate a moving								coil instrument			Genera	al Objective 4.0: Understand the			s of meters and merge	er			9-11	4.1 Explain the following	Explain the following	Textbooks		Guide students to:	Capacitors			meters:	meters:	Journals	Use meters to	Use meters to				 Digital 	Digital Voltmeter	Whiteboard	measure	measure	Inductor			Voltmeter	 Frequency 	Marker	 Voltage 	 Voltage 				 Frequency 	Counter	Charts	 Current 	• Current	e.m.f sources			Counter	 Ohmmeter 	Animations	 Variable 	 Variable 				• Ohmmeter	• Ammeter	Computer	frequencies	frequencies	Resistors			• Ammeter	Merger	Projector	• Earth	• Earth resistance				Merger	LCR meter		resistance	 Insulation 	Voltmeter			• LCR meter			 Insulation 	resistance	and ammeter						resistance	Current (Clamp				4.2 Explain earth point	Explain earth point		• Current	meter)	Insulation			A ()'					resistance					(Clamp meter)		tester		---	---------------------------------------	---	-------------------------------	-------------------------------	------------		4.3 Explain the working principles of the	Explain the working principles of the		(Clamp meter)	· Ch.	LCR meter.		instruments in 4.1 above.	instruments in 4.1		Sketch a diagram	Sketch a diagram of			4.4 Explain features of the	above.		of the following	the following			instruments in 4.1 above.	Explain features of the		meters:	meters:				instruments in 4.1		• Digital	Digital			4.5 Explain functions and	above.		Voltmeter	Voltmeter			constructions of the			 Frequency 	 Frequency 			instruments in 4.1 above.	Explain functions and		Counter	Counter				constructions of the		Ohmmeter	 Ohmmeter 				instruments in 4.1		Ammeter	• Ammeter				above.		Merger	 Merger 						• LCR meter	• LCR meter					-	Identify earth							point	Identify earth point		**ASSESSMENT:** The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will cover 10% of the total score, while the remaining 30% will be for the end of the semester examination. ### Telecommunication I	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY								--	----------------------	------------------	--	--	--	--		COURSE TITLE: Telecommunication I	COURSE CODE: EEC 126	CONTACT HOURS: 3							CREDIT UNIT: 2	THEORETICAL: 1						YEAR: I SEMESTER: II	PRE-REQUISITE:	PRACTICAL: 2						GOAL: This course is designed to equip the students with the knowledge and skills of the principles of telecommunication techniques.							GENERAL OBJECTIVES: On completion of this course, students should be able to: - 1.0 Understand the basic principles of telecommunication system - 2.0 Understand the principles of operation and application of various transducers - 3.0 Understand the basic principles of modulation and demodulation of signals. - 4.0 Understand the principles of receivers.	PROGRAMME: NATIONAL DIPLOMA IN IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY									---	--	-----------------------	------------	--------------------	-----------------------	---------------	--		COURSE TITLE: Telecommunication I COURSE C		ODE: EEC 126		CONTACT HOURS: 3					CREDIT U		NIT: 2		THEORETICAL: 1					YEAR: I SEMESTER: II PRE-REQU			USITE:	PRACTICAL: 2		,				GOAL: This course is designed to equip the students with the knowledge and skills of the principles of telecommunication techniques.								Genera	General Objective 1.0: Understand the basic principles of telecommunication system									THEORETIC	CAL CONTENT		PRACTICAL CONTENT					Week	Specific Learning	Teachers' Activities	Resources	Specific Learning	Teachers' Activities	Resources				Outcomes			Outcome					1 – 2	1.1 Define	Explain	Textbooks	Visit a	Guide students to:	Sample block				telecommunication	telecommunication	Journals	communication	Visit a communication	diagram of a						Whiteboard	service provider	service provider	communication				1.2 Explain the block	Explain the block	Marker	company	company	system				diagram of a simple	diagram of a simple	Charts							communication	communication system	Animations	Identify the basic	Identify the basic	Videoclips				system.		Computer	segments in the	segments in the block					105	Explain transducer	Projector.	block diagram of	diagram of the	Communication				1.3 Explain transducer			the communication	communication	trainer				145 1: 4	Explain the types of		system.	system.					1.4 Explain the types of transducers	transducers									Explain the functions								1.5 Explain the functions	of each of the								of each of the	segments in the block								segments in the block									0	above.							General Objective 2.0: Understand the principles of operation and application of various transducers.									3 – 5	2.1 Describe sound	Explain sound	Textbooks							transducers:	transducers:	Journals					--------	---------------------------------	---------------------------------	-----------------	------------------------	-----------------------	----------------			 Microphones 	 Microphones 	Whiteboard						 Speakers 	 Speakers 	Marker		. 10'				1	1	Charts						2.2 Explain with the aid of	Explain with the aid of	Animations						diagrams the principles	diagrams the	Computer						of operation of sound	principles of operation	Projector.						transducers	of sound transducers										.4()					2.3 Explain the	Explain the																																																						
applications of sound	applications of sound							transducers.	transducers.										O'				Genera	al Objective 3.0: Understand	the basic principles of mo	dulation and de	modulation of signals.				6 – 8	3.1 Define modulation and	Explain modulation and	Textbooks	Visit AM and FM	Organize Visit to AM	Communication			demodulation	demodulation	Journals	radio stations	and FM radio stations	trainer,					Whiteboard			AM transmitter			3.2 Explain the applications	Explain the applications	Marker	Demonst	Guide	and receiver			of modulation and	of modulation and	Charts	rate	students to	trainer,			demodulation in	demodulation in	Animations	modulati	Demonstrat	FM transmitter			communication	communication	Computer	on and	e	and receiver			systems.	systems.	Projector.	demodul	modulation	trainer,						ation in	and	Oscilloscope,			3.3 Explain the modulation	Explain the		AM and	demodulati	Oscillator,			techniques.	modulation		FM	on in AM					techniques.		Modes	and FM				3.4 Explain the working				Modes				principles of amplitude	Explain the working						demodulators.	principles of					---	---	-----	-------	--			amplitude					3.4 Explain the following	demodulators		. 10'			terms regarding amplitude						modulation (AM):	Explain the following					Carrier frequency	terms regarding					Audio frequency	amplitude modulation					• Side frequencies	(AM):					Side hequenciesSide band	• Carrier frequency					36.11.2.1.1	Audio frequency						 Side frequencies 					• Modulation	Side hequenciesSide band					envelope						Bandwidth		XX					• Modulation						envelope	_0_				3.5 Explain the working	Bandwidth					principles of frequency						demodulators.	Explain the working						principles of					3.6 Explain the following	frequency					terms regarding	demodulators.					Frequency Modulation	- ()					(FM):	Explain the following					Modulation index	terms regarding					Deviation ratio	Frequency Modulation					• Frequency	(FM):					deviation	Modulation index						 System deviation Frequency swing 3.7 Explain why FM has a wider bandwidth than AM. 3.8 Explain the differences between the parameters of FM with 	 Deviation ratio Frequency deviation System deviation Frequency swing Explain why FM has a wider bandwidth than AM. Explain differences between the 						--------	---	---	-------------------------------	-----------------------------------	---	-----------------------------			AM.	parameters of FM with AM.							3.9 Explain how to solve problems involving (3.4) and (3.6) above.	Explain how to solve problems involving (3.4) and (3.5) above.	0/2					Genera	al Objective 4.0: Understand	the principles of operation	n of receivers.					12-15	4.1 Define a receiver4.2 Explain the types of	Explain receiver Explain the types of	Textbooks Journals Whiteboard	Visit AM and FM Radio stations	Guide students to: Visit AM and FM Radio stations	Communication trainer			receivers	receivers	Marker Charts	Demonstrate the operation of	Demonstrate the	AM transmitter and receiver			4.3 Explain by using	Explain by using	Animations	receivers using	operation of receivers	trainer			diagram the function of	diagram the function	Computer	receiver trainer	using receiver trainer				receivers.	of receivers.	Projector.			FM transmitter and receiver			4.4 Explain the choice of	Explain the choice of			trainer		---	-----------------------------	-------------------------	-----	---	--------------			intermediate frequency	intermediate frequency						in receivers.	in receivers.			Oscilloscope										4.5 Explain adjacent	Explain adjacent			Oscillator			channel and image	channel and image						interferences in	interferences in		•				receivers.	receivers.														Explain the use of						4.6 Explain the use of	receiver to suppress						receiver to suppress	image and adjacent	. (image and adjacent	channel interferences.						channel interferences.								Explain the function of						4.7 Explain the function of	the automatic gain						Automatic Gain	control (AGC).						Control (AGC).								Explain with the aid of						4.8 Explain with the aid of	a block diagram, the						a block diagram, the	working principles of						working principles of	an FM radio receiver.						an FM radio receiver.						-						**ASSESSMENT:** The practical class will be awarded 60% of the total score. The continuous assessments, tests and quizzes will be 10% the total score, while the remaining 30% will be for the end of Semester examination. ### **Electrical Installation of Buildings**	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL	AND ELECTRONICS ENGINER	ERING TECH	NOLOGY		--	-------------------------	------------	-------------------------		COURSE TITLE: Electrical Installation of Buildings	COURSE CODE: EEC 127		CONTACT HOURS: 3			CREDIT UNIT: 2		THEORETICAL: 1		YEAR: I SEMESTER: II	PRE-REQUISITE:		PRACTICAL: 2						**GOAL**. This course is designed to equip the students with knowledge and skills to implement electrical installations of buildings. GENERAL OBJECTIVES: On completion of this course, the students should be able to. - 1.0 Understand electrical/electronic standard symbols. - 2.0 Understand schematic, wiring diagrams and earthing system. - 3.0 Interpret building drawings and symbols. - 4.0 Understand cables and IEE wiring Regulations. - 5.0 Understand the bill of quantities of materials for the electrical installation of building. - 6.0 Understand Solar power installation, home automation and smart metering.	PROG	FRAMME: NATIONAL DIPLO	OMA IN ELECTRICAL	AND E	LECTRONIC	S ENGINEERI	NG TECHNOLOGY	•			--	----------------------------------	--------------------------------	----------------------	-----------------	-----------------	--------------------------	------------------	--		COURSE TITLE: Electrical Installation of Buildings			COURSE CODE: EEC 127			CONTACT HO	CONTACT HOURS: 3						CRED	IT UNIT: 2	2	THEORETICA	L: 1			YEAR	: I SEMESTER: II		PRE-R	REQUISITE:		PRACTICAL:	2			COUR	SE SPECIFICATION: THE	ORETICAL AND PRAC	CTICA	L						GOAI	: This course is designed to equ	uip the students with kno	wledge	and skills to i	mplement electr	rical installations of b	uildings.			Gener	al Objective 1.0: Understand ele	ectrical/electronic standa	rd syml	ools.							THEORETICAL CONTE	ENT			PRACTICAL	CONTENT				Week	Specific Learning Outcome	Teachers' Activities		Resources	Specific	Teachers'	Resources								Learning	Activities									Outcome						1.1 Define standard symbol.	Explain standard symb	ol.	Textbook	Identify the	Guide students	Sample symbols							Journals	standard	to:				1-2	1.2 Explain electrical drafting.	Explain electrical draft	ing.	Whiteboard	symbols	Identify the	Charts						S)	Marker		standard					1.3 Explain electrical standard	Explain electrical stand		Charts	Sketch the	symbols	Video clips				symbols of the following:	symbols of the following	ng:	Animation	standard	C1 4 1 41					• Resistor.	• Resistor.	•	Computer	symbols	Sketch the	Electrical				• Capacitor	 Capacitor 		Projector.		standard	training				• Inductor	Inductor				symbols	modules				• Diodes	Drodes					Safety				• Thyristor	Thyristor					charts/posters				• Diac	• Diac					charts/posters				• Triac	Triac					Fire				Operational	Operational					extinguisher				 Amplifier 	 Amplifier 									 Oscillator 	 Oscillator 								Logic gates	• Logic gates	Sand bucket		---------------------	--------------------	---------------		• Linear	• Linear	, C X		• IC	• IC	First aid box		PV panel	• PV panel			Charge Controller	Charge Controller			Battery	• Battery			• Inverter	• Inverter			Surmisable water	Surmisable water			• Pump	• Pump	O'		Power Switches	Power Switches	Y		• Sockets	• Sockets			Isolator Switch	Isolator Switch			Circuit Breakers	Circuit Breakers			Electrical Motors	Electrical Motors			Electrical	Electrical		
Generators	Generators			• AC/Fans	• AC/Fans			• ELCB.	• ELCB.			Distribution Board	Distribution Board			Junction box	Junction box			Lamp holder	Lamp holder			Camera	Camera			• TV	• TV			Audio cable	Audio cable			• Single and Multi-	Single and Multi-			core Power cables.	core Power cables.			I VO'				Gener	General Objective 2.0: Understand schematic, wiring diagrams and earthing system.										-------	---	---------------------------------	------------	--------------------	--------------------	------------------	--	--	--		3-4	2.1 Explain schematic and	Explain schematic and	Textbook		Guide students	Sample						Wiring Diagrams	Wiring Diagrams	Journals	Interpret a	to:	schematic								Whiteboard	schematic 🗸	Interpret a	diagrams						2.2 State the merits and	State the merits and demerits	Marker	diagram	schematic							demerits of schematic	of schematic Diagrams	Charts		diagram							Diagrams		Animation			Sample wiring								Computer	Interpret a wiring		diagrams						2.3 State the merits and	State the merits and demerits	Projector	diagram	Interpret a wiring							demerits of wiring	of wiring diagrams			diagram	Earth resistance						diagrams			Conduct earth		tester								·CX	resistance test to	Conduct earth							2.4 Explain the earth	Explain the earth continuity		ascertain the	resistance test to	Power source						continuity conductor,	conductor, earth electrode,		earth resistance	ascertain the							earth electrode, and	and consumer's earth		value	earth resistance	Chart of						consumer's earth	terminal.			value	electrical						terminal.	///				graphic											symbols.						2.5 Explain the earthling	Explain the earthling systems										systems (TT,TN and IT)	(TT,TN and IT) and their										and their relevance to	relevance to electrical										electrical installations.	installations.																					2.6 Explain different	Explain different protection										-	devices of an installation such										installation such as fuses	as fuses and circuit breakers.										and circuit breakers.											\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\											<u></u>						-----------------------------	--------------------------------	--	-----	----------	--		2.7 Explain the difference	Explain the difference						between solid earthling	between solid earthling						practice and earth leakage	practice and earth leakage						circuit breaker (ELCB)	circuit breaker (ELCB)						protection.	protection.			y			2.8 Explain the problems	Explain the problems						associated with earth	associated with earth leakage						leakage circuit breaker.	circuit breaker.		40°				2.9 Explain how the human	Explain how the human body		7"				body can become part of	can become part of an electric						an electric circuit.	circuit.													2.10 Explain how to prevent	Explain how to prevent						electric shock.	electric shock.						2.11 Explain the methods of	Explain the methods of						treating electric shock.	treating electric shock.						2.12 Enumerate the current	Explain the current and						and voltage threshold for	voltage threshold for human						human body	body							*																				~()'							Genera	al Objective 3.0: Interpret Build	ing drawings and symbols.						--------	-----------------------------------	--	------------	-------------------	-------------------	-----------------		4-5	3.1 Explain electrical symbols.	Explain electrical symbols.	Textbook		Guide the	Sample building					Journals		students to:	plan			3.2 Explain building drawings	Explain building drawings	Whiteboard	Identify	Identify						Marker	electrical (electrical	Sample single			3.3 Explain the role of	Explain the role of electrical	Charts	symbols	symbols	line diagram			electrical engineers in	engineer in building	Animation						building drawings	drawings	Computer	Insert electrical	Insert electrical	Electrical					Projector	symbols for the	symbols for the	graphic symbols						installation	installation				3.4 Explain how to interpret	Explain how to interpret		layout in	layout in	Drawing			building drawings	building drawings	.63	building	building	instruments						drawings	drawings									Sample wiring						Produce a single	Produce a single	diagrams						line diagram	line diagram					<i>(</i> , <i>(</i>), <i></i>		based on the	based on the	Computers with						layout	layout	installed								drawing				0.0		Interpret	Interpret	software						building	building							drawings.	drawings.				RAL OBJECTIVE 4.0: Unders	3		,				6-8	4.1Define a cable	Explain a cable	Textbook		Guide students	Cables					Journals	Identify cables	to:				4.2 Explain types of cables	Explain types of cables	Whiteboard	and their sizes	Identify cables	Trunk					Marker		and their sizes				4.3 Explain the differences	Explain the differences	Charts	Select		Electrical			T				<u>																																																																																																																																																																						
</u>		--------------------------------	---------------------------------	-----------	------------------	------------------	-----------------		between cable and a	between cable and a	Animation	appropriate	Select	graphic symbols		conductor	conductor	Computer	cables for	appropriate					Projector	different uses	cables for	Drawing		4.4 Explain cable sizes	Explain cable sizes			different uses	instruments					Draft electrical				4.5 Explain Service main and	Explain Service main and		services for a	Draft electrical	Sample wiring		consumer terminal	consumer terminal		residential	services for a	diagrams					building e.g. 3-	residential			4.6 Explain Circuit and Sub-	Explain Circuit and Sub-		bedroom flat	building e.g. 3-	Cable color		circuit.	circuit.			bedroom flat	code					Demonstrate				4.7 Explain electrical power	Explain electrical power	CX	installation of	Demonstrate	Computers with		diversity factor, ambient	diversity factor, ambient		various types of	installation of	installed		temperature, classes of	temperature, classes of excess.		joints using	various types of	drawing		excess current protection,	current protection, and		PVC flexible	joints using	software		and disposition of cable	disposition of cable		cables.	PVC flexible				/()			cables.			4.8 Explain the IEE tables for	Explain the IEE tables for		Design an				selecting cables.	selecting cables.		electrical	Design an				\circ		service for a	electrical			4.9 Explain the thermal	Explain the thermal		3- bedroom	service for a			durability of cables in case	durability of cables in case of		flat.	3- bedroom			of short-circuit	short-circuit			flat.				V		Identify cable							colour coding	Identify cable			4.10 Explain how to calculate	Explain how to calculate the		commonly used	colour coding			the total load current for a	total load current for a final		in Nigeria.	commonly used			final Sub-circuit in the	Sub-circuit in the building			in Nigeria.				<u> </u>						--	---	---	-------------------	-------------------	--		building			Carryout laying							of cables using	Carryout laying						different	of cables using			4.11 List the main types of	List the main types of		trunking	different			insulation and conducting	insulation and conducting		methods.	trunking			materials used in cables.	materials used in cables.			methods.						Apply I.E.E.				4.12 Distinguish between	Distinguish between		wiring	Apply I.E.E.			conductors and insulators.	conductors and insulators.		Regulations	wiring						related to cables	Regulations			4.13 Describe with the aid of	Describe with the aid of		and their uses.	related to cables			sketches, the construction	sketches, the construction of			and their uses.			of different types of	different types of cables.		Identify types of				cables.			joints	Identify types of							joints			4.14 State the advantages and	Explain the advantages and						disadvantages of the	disadvantages of the						following:	following:						• PVE – Insulated	 PVE - Insulated 						PVC - sheathed cable.	PVC sheathed cable.						Mineral - Insulated	 Mineral - Insulated 						metal - sheathed	metal - sheathed						cable	cable						Armoured PVC –	Armoured PVC –						insulated PVC -	insulated PVC -						sheathed cable	sheathed cable						 Flexible cable and 	 Flexible cable and 						cord	cord								•	•					 Steel and PVC 	 Steel and PVC 						-------	--------------------------------------	-----------------------------------	----------------	-----------------------	-----------------	----------------			Conduits	Conduits			· C Y				 Steel and PVC 	 Steel and PVC 			10				trunking.	trunking.							XLPE insulator cable	XLPE insulator cable							4.15 Explain trunking and ducting	Explain trunking and ducting		ch.					4.16 Explain cable piping and laying	Explain cable piping laying							4.17 Explain the I.E.E. wiring	Explain the I.E.E. wiring	.(,(),						Regulations related to	Regulations related to cables							cables and their uses.	and their uses.							4.18 Explain the cable colour	Explain the cable colour							coding, commonly used	coding, commonly used in							in Nigeria.	Nigeria.							4.19 State various types of	Explain various types of							joints	joints						Gener	al Objective 5.0: Understand b		the electrical	installation of build	ding			9-11	5.1 Explain bill of quantity	Explain bill of quantity	Textbook		Guide students	Sample bill of					Journals	Extract items	to:	quantity			5.2 Explain items in bill of	Explain items in bill of	Whiteboard	for bill of	Extract items				quantities.	quantities.	Marker	quantities from	for bill of	Sample market			1		Charts	drawings.	quantities from	survey report						I		,		--------	-------------------------------	----------------------------------	---------------	--------------------	------------------	-------------			5.3 Explain how to extract	Explain how to extract items	Animation		drawings.				items for bill of quantities	for bill of quantities from	Computer	Conduct market					from drawings.	drawings.	Projector	survey	Conduct market							(hypothetical)	survey				5.4 Explain the importance	Explain the importance of			(hypothetical)				of market survey in	market survey in creating a		Assess the cost					creating a bill of quantity	bill of quantity		of materials.	Assess the cost								of materials.				5.5 Explain the importance	Explain the importance of		Prepare typical					of bill of quantities for the	bill of quantities for the		bill of quantity	Prepare typical				electrical installation of	electrical installation of			bill of quantity				building	building							S	S							5.6 Explain how to assess the	Explain how to assess the							cost of materials.	cost of materials.															5.7 Explain how to prepare	Explain how to prepare							typical bills of engineering	typical bills of engineering							measurements and	measurements and materials							materials for an electrical	for an electrical installation							installation.	Tot un official accumunos						Genera		lar power installation, home aut	omation and s	l mart metering				12-15	6.1 Explain the concept of	Explain the concept of Solar	Textbook	limit metering	Guide students	PV panels		12-13	Solar power system.	power system.	Journals	Identify the	to:	1 v paneis			Solai powei system.	power system.	Whiteboard	1					6.2 List the common and as	List the commonants of Salar		components of	Identify the	Charge			6.2 List the components of	List the components of Solar	Marker	Solar power	components of	Charge			Solar power system	power system	Charts	system.	Solar power	Controllers			<u> </u>		Animation		system.			6.3 Explain the functions of	Explain the functions of each	Computer	Install Closed-		Battery storag		---------------------------------	---	-----------	---------------------	---------------------	--------------------		each component in 6.2	component in 6.2 above	Projector	Circuit	Install Closed-			above			Television	Circuit	Inverter Fuses					(CCTV).	Television			6.4 Explain TV cabling and	Explain TV cabling and			(CCTV).	Cables		installation	installation		Install a satellite	•						Television with	Install a satellite	Circuit breake		6.5 Explain Closed-Circuit	Explain Closed-Circuit		its accessories.	Television with			Television (CCTV).	Television (CCTV).		(C)	its accessories.	For CCTV:				. 5	Install Electrical		Cameras.		6.6 List the components of	List the components of		service mains	Install Electrical			Closed-Circuit Television	Closed-Circuit Television	.(\)	for a premises	service mains	Lenses		(CCTV).	(CCTV).			for a premises				
Television.		commercial/industrial premises.							 				-----------------	------	-----------------				For Prepaid				meter: Energy				meter				Optocoupler				Relay			1/Ch	Load				Driver				LED				EEPROM		^k Ok		Microcontroller				Display.	**ASSESSMENT:** The Practical class will be awarded 60% of the total score. The continuous assessments, tests and quizzes will take 10% of the total score while the remaining 30 % will be for the end-of-the-semester examination score. VEAR TWO, SEMESTER ONF # Logic and Linear Algebra	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY								--	----------------------	------------------	--	--	--	--		COURSE: Logic and Linear Algebra	COURSE CODE: MTH 202	CONTACT HOURS: 2							CREDIT UNIT: 2	THEORETICAL: 2						YEAR: II SEMESTER: I	PRE-REQUISITE:	PRACTICAL: 0					GOAL: This course is designed to equip students with knowledge and skills to apply logical reasoning in engineering **GENERAL OBJECTIVES:** On completion of this course, the student should be able to: - 1.0 Understand the concept of logic and abstract thinking - 2.0 Understand the concept of permutations and combinations - 3.0 Undertake the binomial expansion of algebraic expressions. - 4.0 Understand the algebraic operations of matrixes and determinants	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY							--	----------------	----------------	--	--	--		COURSE: Logic and Linear Algebra COURSE CODE: MTH 202 CONTACT HOURS: 2								CREDIT UNIT: 2	THEORETICAL: 2					YEAR: II SEMESTER: I	PRE-REQUISITE:	PRACTICAL: 0				**COURSE SPECIFICATION:** THEORETICAL AND PRACTICAL GOAL: This course is designed to equip students with knowledge and skills to apply logical reasoning in engineering General Objective 1.0: Understand the Concept of Logic and Abstract Thinking	THEORETICAL CONTENT				PRACTICAL CONTENT				---------------------	---	---	--	---	--	------------		Week	Specific Learning Outcomes	Teacher's activities	Learning Resources	Specific Learning Outcomes	Teacher's activities	Evaluation		1-4	 1.1 Define: Essential connectives Negation Conjunction Disjunction Implication Bi-implication. 1.2 Illustrate the essential connectives define in 1.1 above	Explain: Essential connectives Negation Conjunction Disjunction Implication Bi-implication. Explain the essential connectives define in 1.1 above	Whiteboard Marker Projection Computer Internet Textbooks Lecture Notes	Translate sentences into symbolic form using quantifiers. e.g.: "some freshmen are intelligent can be stated as "for some x,x is a freshman and x is intelligent" can be translated in symbols as (ix) (f x & ix)	Guide students to: Translate sentences into symbolic form using quantifiers. e.g.: "some freshmen are intelligent can be stated as "for some x,x is a freshman and x is intelligent" can be translated in symbols as (ix) (f x & ix)			1.3 Des	scribe grouping and	Explain grouping and					----------	------------------------	-------------------------	------------	-------	--		pare	enthesis in logic	parenthesis in logic									. 10"			1.4 Exp	plain Truth tables.	Explain Truth tables.					1.5 Det	fine tautology.	Explain tautology												1.6 Illu	strate types of	Explain types of					taut	cology.	tautology.								·40'				1.7 Def	fine universal	Explain universal					-	ntifier and	quantifier and					exis	stential quantifier	existential quantifier								J '				_	plain how to translate	Explain how to						ntences into	translate sentences					_	mbolic form using	into symbolic form					-	antifiers. e.g.: "some	using quantifiers. E.g.						eshmen are	"some freshmen are						telligent can be	intelligent can be						ated as "for some x,x	stated as "for some						a freshman and x is	x,x is a freshman and						telligent" can be	x is intelligent" can						inslated in symbols	be translated					as	(ix) (f x & ix)	in symbols as (ix) (f x							& ix)					105								fine the scope of a	Explain the scope of a					qu	antifier. e.g.:	quantifier. e.g.:						D. C.	D C					---------	-------------------------------	---------------------------	----------------	------------------------	--------------------			R=Gauss was a	R=Gauss was a						contemporary of	contemporary of						Napoleon S=Napoleon	Napoleon						was a contemporary of	S=Napoleon was a						Julius Caesar (Thus P,	contemporary of						Q and R are true, and S	Julius Caesar (Thus P,						is false Then find the	Q and R are true, and						truth value of	S is false Then find						sentences: (a) (P and	the truth value of						Q) = R (b) (P - Q) (c)	sentences: (a) (P and						PAND Q = R - S	Q) = R(b)(P - Q)(c)		1/4.					PAND Q = R - S									O *				1.10 Define bond and	Explain bond and						"free" variables.	"free" variables.													1.11 Define term and	Explain term and						formula.	formula.													1.12 Explain the validity of	Explain the validity of						formulae	formulae					General	Objective 2 : Understand the	Concept of Permutations	and Combinatio	ons			5-7	2.1 Define permutation's	Explain permutation's	Whiteboard		Guide students to:			and Combination	and Combination	Marker	Give illustrative	Give illustrative					Projection	examples of the	examples of the			2.2 Explain with illustrative	Explain with illustrative	Computer	fundamental principles	fundamental			examples of each of 2.1	examples of each of 2.1	Internet	of permutations.	principles of			above.	above.	Textbooks		permutations.				· .				--------------------------------	------------------------------	---------	------------------------------	-----------------------------------				Lecture				2.3 State the fundamental	Explain the fundamental	Notes	Establish the formula	Establish the		principle of	principle of		$nPr = \underline{n!}(n-r)!$	formula $nPr = \underline{n!}(n-$		permutations.	permutations.								Solve problems of	\mathbf{O}		2.4 Explain with illustrative	Explain with illustrative		permutations with	Solve problems of		examples of the	examples of the		restrictions on some	permutations with		fundamental principles	fundamental principles		of. the objects	restrictions on some		of permutations.	of permutations.			of. the objects					Solve problems of			2.5 Explain how to establish	Explain how to establish		permutations in which	Solve problems of		the formula $nPr = n ! (n-$	the formula $nPr = n! (n-1)$		the objects may be	permutations in		r)!	r)!		repeated.	which the objects						may be repeated.		2.6 Prove that $nPr = (n-r+1)$			Solve problems of	Solve problems of		*nP _{r-1}			permutations of N	permutations of N					identical objects.	identical objects.		2.7 Explain how to solve			·			problems of			State and prove the	State and prove the		permutations with			theorem $nCr-1+ nCr =$	theorem nCr-1+ nCr		restrictions on some of.			^{n+1}Cr	$=$ $^{n+1}$ Cr		the objects												2.8 Explain how to solve	V					problems of						permutations in which						the objects may be						repeated.						repositos.								<u> </u>		<u> </u>			--------	--	------------------------------------	----------------------	-------------------	--------------------------------------			2.9 Describe circular permutations.				JCAI			2.10 Explain how to solve problems of permutations of N identical objects.			CAL				2.11 Establish the formula: nCr = n! r!(n-r)!			HILL				2.12 State and prove the theorem nCr-1+ ⁿ Cr = ⁿ⁺¹ Cr		2/6					2.13 Explain problems of combinations with restrictions on some of		Or					2.14 Explain how to solve problems of combination of "n" different objects taken any number of it at a time.	O,					Genera	l Objective 3: Undertake the b	inomial expansion of alg	ebraic expression	is.	•		8-11	3.1 Explain with illustrative																																																																																																																		
examples the method of	Explain with illustrative examples	Whiteboard Marker	Illustrative with	Guide students to: Illustrative with		-	-						--------	------------------------------	---------------------------	-------------------	-------------------------	--------------------			mathematical induction.	the method of	Projection	examples the method	examples the				mathematical	Computer	of mathematical	method of			3.2 State and prove binomial	induction.	Internet	induction.	mathematical			theorem for positive		Textbooks		induction.			integral index.	Explain and prove	Lecture						binomial theorem for	Notes	Identify the binomial	Identify the			3.3 Describe the properties	positive integral index.		theorem for a rational	binomial theorem			of binomial expansion.			number.	for a rational				Explain the properties			number.			3.4 State the binomial	of binomial expansion.		Identify the properties				theorem for a rational			of binomial	Identify the			number.	Explain the binomial	. (coefficients	properties of				theorem for a rational		O'	binomial				number.			coefficients			3.5 State the properties of			Apply binomial				binomial coefficients	Explain the properties		expansion in	Apply binomial				of binomial		approximations	expansion in			3.6 Explain how to apply	coefficients		(simple examples	approximations			binomial expansion in			only).	(simple examples			approximations (simple	Explain how to apply			only).			examples only).	binomial expansion in							approximations (simple							examples only).					Genera	Objective 4: Understand the	algebraic operations of m	atrixes and deter	minants			12-15	4.1 Define Matrix	Explain Matrix	Whiteboard		Guide students to:					Marker	Determine a determine	Determine a			4.2 Define the special	Explain the special	Projection	the minors and	determine the			matrixes of zero	matrixes of zero	Computer	cofactors 2 by 2 and 3	minors and										1 .	I -				-------------------------------------	-------------------------------------	-----------	------------------------	---------------------		matrixes e.g.:	matrixes e.g.:	Internet	by 3 matrixes	cofactors 2 by 2		 Zero matrix 	 Zero matrix 	Textbooks		and 3 by 3 matrixes		 Identity matrix 	 Identity matrix 	Lecture		, 10		 Square matrix 	 Square matrix 	Notes	State and prove the	State and prove the		Triangular matrix	 Triangular 		theorem "if two rows	theorem "if two		• Symmetric matrix.	matrix			rows or two			• Symmetric		matrix are	columns of a matrix			matrix.		interchanged, the sign	are interchanged,					of the Value of its	the sign of		4.3 State examples for each	Explain examples for		determinant is changed	the Value of its		of the matrixes in 4.2	each of the matrixes in			determinant is		above	4.2 above	. (changed					O'				Explain the laws of		Identify the minors	Identify the minors		4.4 State the laws of addition	addition and		and cofactors of a	and cofactors of a		and multiplication of	multiplication of		determinant	determinant		matrixes.	matrixes.						V V			Identify the method			Explain the		Identify the method of	of evaluating		4.5 Illustrate the	commutative		evaluating	determinants.		commutative, associative			determinants.				distributive nature of					the laws stated in 4.4	the laws stated in 4.4					above.	above.					above.						4.6 Define the transpose of a	Explain the transpose					matrix.	of a matrix.					(())								I				4.7 Determine the minors	Explain the minors and					---------------------------	--------------------------	-----	-------	--		and cofactors 2 by 2 and	cofactors 2 by 2 and 3					3 by 3 matrixes	by 3 matrixes		, 10,									4.8 Define the minors and	Explain the minors and					cofactors of a	cofactors of a					determinants	determinants					4.9 Explain the method of	Explain the method of	()				evaluating determinants.	evaluating determinants.					evaluating determinants.	evaluating determinants.	10,				4.10 State and prove the	Explain and prove the					theorem "two rows or	theorem "two rows or					two columns of a matrix	two columns of a					are identical, and then	matrix are identical,					the value of its	and then the value of	_				determinant is zero".	its determinant is	•					zero".					4.11 State and prove the						theorem "if two rows or	Explain and prove the					two columns of a matrix	theorem "if two rows					are interchanged, the	or two columns of a					sign of the Value of its	matrix are					determinant is changed	interchanged, the sign						of the Value of its						determinant is changed											EVALUATION- EXAMINATION	: 40% C.A: 60%							169				10,																	### **Electrical Power II**	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY							--	-------------------------------	------------------	--	--	--		COURSE TITLE: Electrical Power II	COURSE CODE: EEC 211	CONTACT HOURS: 3						CREDIT UNIT: 2	THEORETICAL: 1					YEAR: II SEMESTER: I	PRE-REQUISITE: EEC 121	PRACTICAL: 2					COAT TILL	. 1 . 1.1 . 1 . 1 . 1 . 1 . 1					GOAL: This course is designed to acquaint the students with the knowledge and skills of the principles of power system GENERAL OBJECTIVES: On completion of this course, the student should be able to - 1.0 Understand other methods of Electricity Generation - 2.0 Understand the transmission lines and cable - 3.0 Understand the performance of short, medium and long transmission lines.	PROGRAMME: NATIONAL DIPLO	MA IN ELECTRICAL AND ELECTRONICS EN	IGINEERING TECHNOLOGY		-----------------------------------	-------------------------------------	-----------------------		COURSE TITLE: Electrical Power II	COURSE CODE: EEC 211	CONTACT HOURS: 3			CREDIT UNIT: 2	THEORETICAL: 1		YEAR: II SEMESTER: I	PRE-REQUISITE: EEC 121	PRACTICAL: 2	#### COURSE SPECIFICATION: THEORETICAL AND PRACTICAL GOAL: This course is designed to acquaint the students with the knowledge and skills of the principles of power systems ## GENERAL OBJECTIVE 1.0: Understand other methods of Electricity Generation		TH	IEORETICAL CONTEN	PRACTICAL CON	TENT				------	--	--	---------------------------------------	--	---	---		Week	Specific Learning Outcome	Teachers' Activities	Resources	Specific Learning Outcome	Teachers' Activities	Resources		1-6	 1.1 Describe the following: Hydro electricity Generation plant. Magneto- Hydro- 	 Explain the following: Hydro electricity Generation plant: Magneto- Hydro-Dynamic (MHD) power 	Textbooks Journals White board Marker	Visit a power plant Demonstrate the layout diagrams of power plants	Guide the students to: Visit a power plant	Chart of the Nigerian National Grid system			Dynamic (MHD) power plant Combine cycle Gas power plant. Biomass power plant.	plant Combine cycle Gas power plant. Biomass power plant.	Charts Animations Computer	Assemble the components of the PV Power	Demonstrate the layout diagrams of power plants	PV panel Charge controller			PV power plantWind power plant	PV power plantWind power plant.	Projector	generation system for domestic application.	Assemble the components of the PV Power	Battery storag		1.2 Explain the factors affecting the choice of site for plants in 1.1 above	Explain the factors affecting the choice of site for plants in 1.1 above		Draw a typical load curve	generation system for domestic application. Draw a typical	Inverter and energy saver lamp		--	--	---	---------------------------	---	--------------------------------		1.3 Explain the advantages			CAL	load curve	Connecting cable		and disadvantages of	Explain the advantages						power plants in 1.1	and disadvantages of power plants in 1.1				Switch		1.4 Explain a typical							layout of a power	Explain a typical layout				Fuse and		generation system.	of a power generation system.	8			junction box.		1.5 Describe the Nigerian							National Electric Power	Explain the Nigerian						Grid system.	National Electric Power Grid system						1.6 Describe a microgrid							and state its benefits and							challenges																																																																																																																																															
Explain a microgrid and							state its benefits and challenges						1.7 Describe Renewable							Energy Sources (RES)							with their benefits and	Explain Renewable				--	---------------------------	---	------------		challenges.	Energy Sources (RES)					with their benefits and		()			challenges.)		1.8 Describe the layout of					the PV Power generation					system and its application	Explain the layout of the					PV Power generation				100 1 41 1 4 6	system and its				1.9 Describe the layout of the wind power generation	application				system and its					applications.	Explain the layout of the				иррпеционь.	wind power generation					system and its				1.10 Describe the types of	applications.	•			generators that are					commonly used for peak,	/()				medium and base loads.						Explain the types of					generators that are				1.11Explain how to	commonly used for				calculate load factor, peak	peak, medium and base				and base load costs in the	loads.				distribution system applying per unit.					apprying per unit.																						T				1		-------	--------------------------------	--------------------------------	-------------	-----------------------	--------------------	-----------------			1.12 Explain a typical load	Explain how to calculate							curve.	load factor, peak and								base load costs in the								distribution system								applying per unit.																Explain a typical load curve.		, CAL				Gener	al Objective 2.0: Understand	the transmission lines and o	cable	77	l			7-11	2.1 Describe types of:	Explain types of:	Textbooks		Guide students to:	Samples of			• Poles	• Poles	Journals	Visit a transmission	Visit a	poles			Pole support	Pole support		substations	transmission				Insulators	Insulators	White board	Substations	substations				• Towers.	• Towers.	Marker,		Substations	Pole supports			Towers.	16wers.	Ividiker,	Assemble poles,							Charts and	pole supports, and	Assemble poles,				2.2 Describe the line and	Explain the line and	animations	insulators in a dead	pole supports,	Towers			route surveying.	route surveying	Commutan	substation.	insulators, and					\circ	Computer	substation.	towers in a dead						Projector		substation	Chart for			2.3 Derive expressions for	Explain the derivation of	-		Substation	construction of			resistance, inductance and	resistance, inductance				various			capacitance for	and capacitance for		Connect voltage and	Cannact 14	conductors and			transmission lines.	transmission lines.		current transformers	Connect voltage	cables						for measurements in	and current							the transmission line	transformers for				2.4 Explain the short,	Explain the short,		model.	measurements in	Transmission		medium and long	medium and long			model.	and distribu		------------------------------	--------------------------	-----	--------------------	------------------	--------------		transmission models.	transmission models		Demonstrate the		line trainer												stages of	Demonstrate the			2.5 Explain problems	Explain problems		construction for	stages of	Video clips		involved in short and	involved in short and		conductors and	construction for	•		medium transmission lines.	medium transmission	.`	laying underground	conductors and				lines.		cables:	laying						Two-core cable	underground			2.6 Describe the				cables:			applications of voltage and	Explain the applications		Three core cable	T. 11			current transformers in the	of voltage and current			Two-core cable			transmission line.	transformers in the	.()	*	Three core cable				transmission line.													2.7 Describe with the aid of							diagrams, the construction	Explain with the aid of						of various conductors and	diagrams, the						their sizes.	construction of various							conductors and their							sizes.						2.8 Describe with the aid of							diagrams the construction							of types of underground	Explain with the aid of						cables and their	diagrams the						advantages.	construction of various						T 11	types of under						Two-core cable	ground cable and state						Three core cable	ground cable and state															175					WALLO																													their advantages			---	--	--		2.9 Define dielectric stress	Two-core cable			and ionization in cables.	Three core cable			2.10 Derive expression for the capacitance dielectric stress, insulation resistance	Explain dielectric stress and ionization in cables			and resistivity of a single core cable.	Explain the expression for the capacitance dielectric stress,			2.11 State expression for the thermal resistance for single and three-core cables.	insulation resistance, and resistivity of a single-core cable.				Explain the expression for the thermal resistance for single and				three-core cables.				3.1 Describe the principles	Explain the modeling of	Textbooks				-------	---	---	-------------	---	--			of modeling of short and medium transmission	short and medium transmission lines.	Journals				12-15	lines.		White board	5						Marker					3.2 Describe the concept	Explain the concept of	Charts					of per unit system.	per unit system.	Animations							Computer					3.3 Describe the expressions for per unit	Explain expressions for	Projector					power, voltage, current	per unit power, voltage, current and impedance.						and impedance.	1								0					3.4 Describe the voltage at the sending end and	Explain the voltage at						receiving end of the	the sending and						transmission line.	receiving end of a							transmission line.						3.5 Describe the phasor							diagram of a short	20 ,						transmission line.	Explain the phasor							diagram of a short						3.6 Explain and solve	transmission line						problems in short									l .				transmission lines for	Explain and solve			----------------------------	---------------------------	-------		voltage drop, voltage	problems in voltage			regulation, transmission	drop, voltage regulation,	, (6)		efficiency and copper	transmission efficiency			losses.	and copper losses in a				transmission line.				Explain the approximate			3.7 Explain the	equivalent diagrams for			approximate equivalent	nominal Π (Pi) and	A()		diagrams for nominal Π	nominal (T) networks			(Pi) and nominal T	and calculate the			networks and calculate the	parameters.			parameters.								3.8 Describe the phasor	Explain the phasor			diagrams for nominal Π	diagrams for nominal Π			(Pi) or nominal T network	(Pi) or nominal T			systems.	network systems.						**ASSESSMENT:** The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will take 10% of the total score, while the remaining 30% will be for the end of the semester examination score. ### **Electrical Machine II**	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY							--	------------------------	------------------	--	--	--		COURSE TITLE: Electrical Machine II	COURSE CODE: EEC 212	CONTACT HOURS: 3				
CONTENT					---------------------	---------------------------------	---------------------------------	-------------------	------------------------------	-------------------------	----------------		Week	Specific Learning	Teachers' Activities	Resources	Specific Learning	Teachers' Activities	Resources			Outcome			Outcome				1 – 5	1.1 Describe basic	Explain basic	Textbooks		Guide the students to:	Electrical			principles of	principles of	Journals 🖊	Carryout experiments on	Carryout experiments	machine			electrical machine	electrical machine	White board,	circuit characteristics of a	on circuit						Marker	3-phase induction motor.	characteristics of a 3-	Starter			1.2 Describe the	Explain the principle	Charts		phase induction motor.				principle of:	of:	Animations			Voltmeter			 Induction 	 Induction 	Computer	Carryout experiment on	Carryout experiment				 Alignment 	 Alignment 	Projector	circuit characteristics of	on circuit	Ammeter			 Interaction 	 Interaction 		an alternator/A.C	characteristics of an				 Rotating 	 Rotating 		generator.	alternator/A.C	Tachometer			magnetic field	magnetic field			generator.				_	V				Phase			1.3 Describe with the aid	Explain with the aid		Perform experiment to	Perform experiment to	sequence			of sketches how the	of sketches how the		determine relationship	determine relationship	indicator/mete			principles are applied	principles are applied		between excitation	between excitation	r.			to electrical	to electrical machines		current and output	current and output			, , , , , , , , , , , , , , , , , , ,		T		T		T		---------------------------------------	----------------------------	------------------------	------------	--	---	-------------			machines.	Explain Electro –		terminal voltage	terminal voltage				1.4 Describe Electro –	mechanical energy			Perform experiment to				mechanical energy	conversion.		Perform experiment to	determine relationship				conversion.			determine relationship	between speed and							between speed and output	output terminal							terminal voltage.	voltage.							Demonstrate the construction of electrical machines.	Demonstrate the construction of electrical machines			Genera	l Objective 2.0: Understan			nergy conversion				6 – 10	2.1 Describe the	Explain the	Textbooks		Guide the students to:	Sample name			construction and	construction and	Journals /		Interpret name plate of	plates			principle of Induction	principle of Induction	Whiteboard	Interpret name plate of	synchronous and				motor.	motor.	Marker	synchronous and induction	induction motors and	Electrical					Charts	motors and generators	generators	machine			2.2 Describe the	Describe the principle	Animations		generators				principle of operation	of operation of	Computer		Demonstrate the	Starters			of synchronous	synchronous generator	Projector	Demonstrate the	conversion of energy				generator and motors.	and motors.		conversion of energy in	in singly excited	Generator						singly excited systems.	systems.				2.3 Describe Stator and	Describe Stator and			systems.	Induction			Rotor construction as	Rotor construction as		Determine the terminal of		motor			applied to	applied to		a 3 – phase induction	Determine the terminal				synchronous	synchronous machine.		motor	of a 3 – phase induction	Synchronous			machine.				motor	motor			(/	Explain the major						0.4.0			b : 1 : 1 c	b	T		-----------------------------------	------------------------	---	--	-----------------------------------	-------------		2.4 State the major	energy conversion		Determine the terminal of	Determine the terminal	Ammeter		energy conversion	principles.		a 3 – phase synchronous	of a 3 – phase			principles.			generator.	synchronous generator.	Voltmeter			Explain how to derive							the energy in the		Measure the electrical	Measure the electrical	Clamp meter		2.5 Derive the energy in	magnetic field of a		quantities of 3 phase	quantities of 3 phase	Tachometer		the magnetic field of	singly excited system.		induction motor.	induction motor.			a singly excited					Multimeter.		system.	State the need for		Identify the basic	Identify the basic				control and protection		difference between motors	difference between				of electric motors		and generators.	motors and generators.			2.6 State the need for							control and	Describe the		Demonstrate the	Demonstrate the			protection of electric	techniques for motor		techniques for motor	techniques for motor			motors	starting and control:		starting and control:	starting and control:				• Direct online		 Direct online 	 Direct online 			2.7 Describe the	starter		starter	starter			techniques for motor	Star-Delta	Y	Star-Delta starter	• Star-Delta			starting and control:	starter		 Soft starter 	starter			 Direct online 	Auto		 Variable frequency 	 Soft starter 			starter	Transformer		drive	 Variable 			Star-Delta starter	Part winding			frequency drive			Auto Transformer	• Soft starter						 Part winding 	Variable						Soft starter	frequency						Variable	drive						frequency drive	•							Describe the types of								overcurrent						--------	-----------------------------------	---------------------------	-----------------------	-----------------------------	--------------------------	--------------				protective devices							2.8 Describe the types of	protective devices							overcurrent								protective devices							Genera	al Objective 3.0: Know the	nrinciples of operation a	l and construction	of transformers					3.1 Define transformer	Explain transformers	Textbooks	of transformers.	Guide students to:	Transformer		11-13	3.1 Define transformer	Explain transformers	Journals	Visit power	Visit power substation/	Ammeter,			2.2 Explain the	Explain the	White board	substation/show video clips	<u> </u>	Voltmeter,			3.2 Explain the classification of	classification of	Marker	substation/show video clips	show video chips				transformers	transformers	Charts	Classification	Classify two afamasans	Clamp meter,			transformers	transformers		Classify transformers	Classify transformers	Tachometer,			225 1: 4	D 1 ' 4	Animations			Multimeter			3.3 Explain the	Explain the	Computer	Monitor temperature of a	Monitor temperature of	Temperature			applications of	applications of	Projector	transformer.	a transformer.	Sensors,			transformer	transformer	Electrical			•					machines	Identify methods of	Identify methods of				3.4 Differentiate between			cooling transformers.	cooling transformers.	Video clips			power and	Explain the	X						distribution	differences between		Sketch phasor diagrams	Sketch phasor				transformers.	power and		of transformers on load	diagrams of					distribution		and on No-load	transformers on load					transformers.			and on No-load				3.5 Describe the effects			Sketch the equivalent					of temperature rise on	Explain the effects of		circuit of a transformer	Sketch the equivalent				transformers.	temperature rise on			circuit of a transformer					transformers.		Perform experiment on					3.6 Describe the different			open circuit	Perform experiment on				types of transformer	Explain the different		characteristics of a single	open circuit			cores and windings.	types of transformer	phase transformer.	characteristics of a		--------------------------	------------------------------------	-------------------------------	---------------------------		cores and windings.	cores and windings.	phase transformer.	single phase		3.7 Describe methods of	cores and windings.		transformer.		cooling transformers.	Explain methods of	Perform experiment on	transformer.		cooming transformers.	cooling transformers.	open circuit	Perform experiment on		2 0 Danamila a 41a a	cooming transformers.	characteristics of three			3.8 Describe the	D 1: 4		open circuit		limitation of each	Explain the	phase transformers.	characteristics of three		method.	limitations of each		phase transformers.			method.	·(U)			3.9 Explain the working		Carryout experiment on	Carryout experiment on		principle of the	Explain the working	close circuit characteristics	close circuit		transformers.	principle of the	of a single phase	characteristics of a			transformers.	transformer.	single phase		3.10 Derive the EMF			transformer.		equation of a	Explain the EMF				transformer.	equation of a	Perform experiment on	Perform experiment on			transformer.	close																																						
circuit	close circuit		3.11 Describe:		characteristics of three	characteristics of three		Resultant flux	Describe:	phase transformer.	phase transformer.		Magnetizing	 Resultant flux 				inductance	Magnetizing		Perform experiment on		Leakage fluxes	inductance	Perform experiment on	identifying polarity of a		Leakage Leakage	• Leakage	identifying polarity of a	3-phase transformer.				3-phase transformer.	Final transferring		inductances.	fluxes	o phase transformer.	Conduct transformation		2.10 D 11 .1 .1	Leakage	Conduct transformation	ration test on a		3.12 Describe the phasor	inductances.	ration test on a	transformer'		diagrams for			transformer		transformer on No-	Describe the phasor	transformer'			diagrams for			Use the Open-circuit			------------------------	--	---	---	--		transformer on No-			and Short-circuit tests			load and On-load.		Use the Open-circuit and	to determine the					Short-circuit tests to	equivalent circuit			Describe the		determine the equivalent	parameters.			equivalent circuit of		circuit parameters.				a transformer.			Sketch possible					Sketch possible	arrangement of three			Explain the		arrangement of three	transformer windings.			limitations of the		transformer windings.				equivalent circuit and						the approximate						equivalent circuit.												Explain Open-circuit						and the Short-circuit						tests to determine the						equivalent circuit						parameters.						\circ						Describe different						methods of testing						transformers.						. 💙						Explain connection of						three single phase						transformers for 3-						phase operation (i.e.							transformer on No-load and On-load. Describe the equivalent circuit of a transformer. Explain the limitations of the equivalent circuit and the approximate equivalent circuit. Explain Open-circuit and the Short-circuit tests to determine the equivalent circuit parameters. Describe different methods of testing transformers. Explain connection of three single phase transformers for 3-	transformer on No-load and On-load. Describe the equivalent circuit of a transformer. Explain the limitations of the equivalent circuit and the approximate equivalent circuit. Explain Open-circuit and the Short-circuit tests to determine the equivalent circuit parameters. Describe different methods of testing transformers Explain connection of three single phase transformers for 3-	transformer on No- load and On-load. Describe the equivalent circuit of a transformer. Explain the limitations of the equivalent circuit and the approximate equivalent circuit and the Short-circuit tests to determine the equivalent circuit and the Short-circuit tests to determine the equivalent circuit parameters. Describe different methods of testing transformers Explain connection of three single phase transformers for 3-	transformer on No- load and On-load. Describe the equivalent circuit of a transformer. Explain the limitations of the equivalent circuit and the Short-circuit tests to determine the equivalent circuit and the Short-circuit tests to determine the equivalent circuit parameters. Explain Open-circuit and the Short-circuit tests to determine the equivalent circuit and the Short-circuit tests to determine the equivalent circuit and the Short-circuit tests to determine the equivalent circuit parameters. Describe different methods of testing transformers Explain connection of three single phase iransformers for 3-		1				1			----------------------------	-------------------------	-----------	-------	----------	--			Star/Star, Star/Delta).						3.18 Describe							diagrammatically the	Explain						possible arrangement	diagrammatically the						of three transformer	possible arrangement						windings.	of three transformer							windings.						3.19 Describe the purpose							of the tertiary	Explain the purpose of		12.	,			windings in 3-phase	the tertiary windings						transformers.	in 3-phase		1/1/4					transformers.		CK1.				3.20 Describe the parallel							operation of 3-phase	Explain the parallel						transformers.	operation of 3-phase							transformers.						3.21 State the conditions		()					for paralleling of	Explain the conditions						transformers	for paralleling of							transformers						3.22 Derive expression							for load sharing of	Explain how to derive						transformers	expression for load						connected in parallel.	sharing of							transformers							connected in parallel.					**Assessment:** The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will take 10% of the total score, while the remaining 30% will be for the end of the semester examination score.	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY									--	--	---	--	--	--	--	--		COURSE TITLE: Electronics II	CODE: EEC 213	CONTACT HOURS: 4								CREDIT UNIT: 3	THEORETICAL: 1							YEAR: II SEMESTER: I	PRE-REQUISITE: EEC 123	PRACTICAL: 3							GOAL: This course is designed to equip	he student with the knowledge and skills of pa	assive and active electronic components and their							applications.									GENERAL OBJECTIVES: At the end of the course the student should be able to:									1.0. II. 1								- 2.0 Understand biasing equivalent circuits and gain stages - 3.0 Understand transformer coupling and power and multistage of amplifiers # Electronics II	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING									---	-------------------------------	------------------	--	--	--	--	--		COURSE TITLE: Electronics II	CODE: EEC 213	CONTACT HOURS: 4								CREDIT UNIT: 3	THEORETICAL: 1							YEAR: II SEMESTER: I	PRE-REQUISITE: EEC 123	PRACTICAL: 3							COVER OF CHECKEY OF THE CALL THE CALL	TO A T A TYPE PRO A CONTO A T	_						### **COURSE SPECIFICATION:** THEORETICAL AND PRACTICAL GOAL: This course is designed to equip the student with the knowledge and skills of semi-conductor components General Objective 1.0: Understand the Field Effect transistor and its applications	THEORETICAL CONTENT I			PRACTICAL CONTENT					-----------------------	---------------------------	-----------------------------	-------------------	------------------------------------	------------------------------------	------------		Week	Specific Learning	Teachers' Activities	Resources	Specific Learning	Teachers' Activities	Resources			Outcome			Outcome					1.1 Describe the basic	Explain the basic	Textbooks		Guide students to:	Breadboard		1 -5	operations and	operations and	Journals	Carry out experiment on	Carry out experiment on				constructional features	constructional features	Whiteboard	FET Static Characteristics	FET Static Characteristics	MOSFET			of FET's (junction gate	of FETs (junction gate	Marker	in common source	in common source				and insulated gate).	and insulated gate).	Charts	configuration	configuration	Multimeter					Animations			FET			1.2 Explain JFET Transfer	Explain the transfer	Computer	Demonstrate the	Demonstrate the				Characteristics.	Characteristics of	Projector	applications of MOSFET:	applications of MOSFET:																																																																																																																																																																																																																																																																																						
JFET				JFET		 Switching (DC- 	 Switching (DC- 				1.3 Describe Mutual			DC Converter)	DC Converter)				Conductance and Drain	Explain Mutual		 Amplification 	 Amplification 				to Source Resistance.	Conductance and		 Variable 	 Variable 					Drain to Source		resistance (Signal	resistance (Signal				1.4 Describe handling	Resistance		processing)	processing)				precautions of FET.	4 '							\(\)'	Explain handling								-				.		--------	----------------------------------	-----------------------------	----------------	----------------------------	----------------------------	--------------			1.5. Define Input	precautions of FET							Resistance.									Explain Input			. 10"				1.6 Describe Depletion	Resistance							mode and enhancement								mode of MOSFET								Characteristics.	Explain Depletion			•					mode and							1.7 Explain the	enhancement mode of		CHMICAL					applications of FET,	MOSFET							JFET and MOSFET	Characteristics																Explain the		(,\(\)						applications of FET,								JFET and MOSFET	`					Genera	al Objective 2.0: Understand	the biasing equivalent circ	cuits and gain	stages					2.1 Describe DC Biasing	Explain DC biasing and		Perform experiment on	Guide students to:	Breadboard,		6 - 10	and r – parameters.	r – parameters.	Journals	common source		MOSFET,			•		Whiteboard	amplifier characteristics.	Perform experiment on	Multimeter,			2.2 Describe Common	Explain Common	marker	_	common source	DC Power			source Configuration	source Configuration of	Charts	Carry Out experiment on	amplifier characteristics.	source.			of MOSFET	MOSFET	Animations	common gate amplifier	_				 Voltage gain 		Computer	characteristics	Carry Out experiment on				Current Gain	• Voltage gain	Projector		common gate amplifier				Power Gain.	• Current Gain	_	Conduct an experiment	characteristics					Power Gain.		on common drain					2.3 Describe Common	Explain Common drain		amplifier characteristics	Conduct an experiment				drain Configuration of	Configuration of			on common drain				9	1	l .						MOSFET • Voltage gain	MOSFET. • Voltage gain			amplifier characteristics			-------	--	---	---------------------	---	---	---------------			• Current gain	Current gain			110,				Power gain	Power gain							2.4 Describe Common gate Configuration of MOSFET	Explain Common gate Configuration of MOSFET							Voltage gain	Voltage gain							Current gainPower gain	• Current gain		1/0,					1 Tower gain	Power gain							2.5 Differentiate between	Explain the differences							the configurations of BJT and MOSFET	between the							BJT and WOSI ET	configurations of BJT and MOSFET	R					Gener	al Objective 3.0: Understand	the Transformer coupling	and power an	d multistage of amplifiers.	1				3.1 Describe Power	Explain Power amplifier	Textbooks		Guide students to:	Transformer		11-15	amplifier		Journals Whiteboard	Perform an experiment on Characteristics of	Perform an experiment on Characteristics of	coupled Class			3.2 Explain transformer	Explain transformer	marker	transformer coupled	transformer coupled	Amplifier			coupling.	coupling.	Charts	Class A amplifier:	Class A amplifier:	p				6	Animations			Multimeter			3.3 Describe principles of	Explain principles of	Computer	Identify the frequency	Identify the frequency	0 111			coupling	coupling	Projector	response characteristics	response characteristics	Oscilloscope			3.4 Explain the methods of	Explain the methods of		of amplifier.	of amplifier.	Electronics				1	ı					----------------	----------------	-------------------------	---	---------------------------	---------------------------	---------------		inter stage	coupling in	inter stage coupling in		Identify the relationship	Identify the relationship	trainer		multistage	amplifiers.	multistage amplifiers.		impedance, power and	impedance, power and							phase relationship.	phase	Circuit		3.3 Describe A	amplifiers and	Explain Amplifiers and				construction		small signa	al analysis.	small signal analysis.				deck								Semiconductor		3.4 Describe m	ultistage	Explain multistage				trainer.		amplifiers.		amplifiers.														3.6 Describe C	omplex	Explain Complex						amplifier c	ircuit.	amplifier circuit.																					Assessment: The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will take 10% of the total of the seme. score, while the remaining 30% will be for the end of the semester examination score. ## Electric Circuit Theory I	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY						--	----------------------	------------------	--	--		COURSE TITLE: Electric Circuit Theory I	COURSE CODE: EEC 214	CONTACT HOURS: 3					CREDIT UNIT: 2	THEORETICAL: 1				YEAR: II SEMESTER: I	PRE-REQUISITE:	PRACTICAL: 2			GOAL: This course is designed to equip the students with knowledge and skills of electrical circuit theorems and network analysis of multiphase systems. GENERAL OBJECTIVES: On completion of this course, the student should be able to: - 1.0 Understand a.c theory and its applications in simple electrical circuits. - 2.0 Know mesh and nodal analysis and their applications in solving electrical circuits' problems. - 3.0 Understand network transformation and duality principles. - 4.0 Understand network theorems and their applications to d.c and a circuits.	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING TECNOLOGY						--	----------------------	--	------------------	--		COURSE TITLE: Electric Circuit Theory I	COURSE CODE: EEC 214		CONTACT HOURS: 3				CREDIT UNIT: 2		THEORETICAL: 1			YEAR: II SEMESTER: I	PRE-REQUISITE:		PRACTICAL: 2			COURSE SPECIFICATION: THEORETICAL AND PRACTICAL					GOAL: This course is designed to equip the students with knowledge and skills of electrical circuit theorems and network analysis of multiphase systems. General Objective 1.0: Understand a.c theory and its applications in simple electrical circuits.		THEORETICAL CONTENT			PRACTICAL CONTENT				-------	----------------------------------	-------------------------------------	-------------	--------------------------	----------------------	------------		Week	Specific Learning	Teachers' Activities	Resources	Špecific Learning	Teachers'	Resources			Outcome			Outcome	Activities				1.1 Define signals	Explain signals	Textbooks		Guide students to:	Sample		1 - 4			Journals			phasor			1.2 Explain the types of	Explain the types of signals	Markers	Draw to scale phasor	Draw to scale	diagrams			signals		Whiteboard	diagrams for a.c	phasor diagrams for						Charts	circuits.	a.c circuits.	Electrical			1.3 State the different	Explain the different	Animation			circuits			mathematical forms of	mathematical forms of	Calculators	Draw phasor	Draw phasor				representing a.c	representing a.c signals such	Computer	diagrams that the	diagrams that the	Ohmmeter			signals. such as:	as:	Multimedia	current in a capacitor	current in a				 Exponential 	 Exponential 	Projectors	circuit leads voltage	capacitor circuit	Capacitor			 Trigonometry 	 Trigonometry 		and the current in the	leads voltage and				 Polar 	Polar and		inductive circuit lags	the current in the	Multimeter			Rectangular (j-	 Rectangular (j- 		the voltage.	inductive circuit				notation)	notation)			lags the voltage.	Electronic								trainer			1.4 Explain how to			Investigate the	Investigate the				convert a c signal in			behaviour of series-	behaviour of series-			polar form to the	Explain how to convert a.c		parallel connected	parallel connected			-----------------------------	--------------------------------	---	-----------------------	-----------------------	--		Rectangular form.	signal in polar form to the		resistors.	resistors.				Rectangular form.						1.5 Explain how to use all			Determine the	Determine the			the four (4)			voltage divider.	voltage divider.			mathematical operator	Explain how to use all the						to calculate the values	four (4) mathematical		Test the inductor	Test the inductor			of ac signals in	operator to calculate the		using ohmmeter.	using ohmmeter.			different forms of ac	values of ac signals in						signal.	different forms of ac signal.		Demonstrate																																												
how to	Demonstrate how						test capacitor by	to test capacitor by			1.6 Solve simple			observing their	observing their			problems			charging and	charging and			using j-notation	Explain how to solve as many		discharging	discharging				numerical problems as							possible on conversion of an		Convert a.c signal in	Convert a.c signal			1.7 Explain with the aid of	ac signals from one form to		polar form to the	in polar form to the			phasor diagrams (draw	another.		Rectangular form.	Rectangular form.			to scale) the behaviour		•					of a.c	Explain with the aid of phasor		Demonstrate how to	Demonstrate how				diagrams (draw to scale) the		verify Ohm's law.	to verify Ohm's			1.8 Distinguish between	behaviour of a.c			law.			inductive reactance and			Simulate resonance				capacitive reactance.	Explain the difference		conditions in series	Simulate resonance				between inductive reactance		and parallel RLC	conditions in series			1.9 Define a.c Circuits	and capacitive reactance.		circuits.	and parallel RLC				No.			circuits.			•	Explain a.c circuits and its		Show with the aid of				1.10 Explain the types of	types		phasor diagrams that	Show with the aid			a.c circuits			the current in a	of phasor diagrams				1		capacitor circuit	that the current in a						leads voltage and the	capacitor circuit			1.11 Explain how to draw	Explain the types of a.c circuits		current in the	leads voltage and			----------------------------	-----------------------------------	----------	------------------------	---------------------	--		the phasor diagrams for			inductive circuit lags	the current in the			series and parallel a.c			the voltage.	inductive circuit			circuits.				lags the voltage.				Explain how to draw the		Show wave forms of				1.12 Explain how to	phasor diagrams for series and		lagging and leading	Show wave forms			calculate voltage,	parallel a.c circuits.		angles of voltage and	of lagging and			current, power and			current on a	leading angles of			power factor in series			Cartesian plane.	voltage and current			and parallel circuits.	Explain how to calculate			on a Cartesian				voltage, current, power and			plane.			1.13 Explain series and	power factor in series and						parallel resonance	parallel circuits.																				1.14 Explain how to	Explain the resonance	\wedge					calculate the Q-factor	frequency and the conditions						for a coil; loss factor	for series and parallel						for a capacitor.	resonance.						1.65							1.15 Explain, with the aid	Explain how to calculate the						of a diagram,	Q-factor for a coil; loss factor						bandwidth	for a capacitor.						1.165 1:1							1.16 Explain how to solve	F 1 0 1 6						problems involving	Explain, with the aid of a						bandwidth and circuit	diagram, bandwidth						Q-factor.	Endin have to calve						1 17 51-:	Explain how to solve						1.17 Explain resonance in	problems involving bandwidth						RLC circuit	and circuit Q-factor.														T	T= 4	1	T		T		---------	---	---	---------------	-----------------------------	---------------------	------------				Explain resonance in RLC								circuit			CV			General		nd nodal analysis and their application		ing electrical circuits pro				5 - 7	2.1 Explain the terms used	Explain the terms used in	Textbooks		Guide students to:	Sample			in electric network:	electric network:	Journals	Demonstrate the	Demonstrate the	phasor			 Ideal and practical 	Ideal and practical	Markers	application of mesh	application of mesh	diagrams			independent	independent current	Whiteboard	circuit analysis.	circuit analysis.	Electrical			current and voltage	and voltage sources	Charts			circuits			sources	Branch	Animation	Demonstrate the	Demonstrate the	Circuits			 Branch 	• Node	Calculators _	application of Nodal	application of	Ohmmeter			• Node	• Loop	Computer	circuit analysis.	Nodal circuit				• Loop	Network	Multimedia		analysis.	Capacitor			 Network 		Projectors			Multimeter								Multimeter				Explain the basic principle of				Electronic			2.2 Explain the basic	mesh circuit analysis and				trainer			principle of mesh circuit	•							analysis.									Explain how to solve problem							2.3 Explain how to solve	on mesh circuit analysis							problem on mesh circuit								analysis.									Explain the basic principle of								nodal circuit analysis.							principle of nodal								circuit analysis.									Explain how to solve as many							2.5 Explain how to solve	numerical problems as						L	1	1	J.		l	1		problems on nodal circuit analysis.	possible on mesh and nodal circuit analysis.			CA			---	---	--	---	--																																																																																																																																																																																																																																																																																																									
---		Objective 3.0: Understand no	etwork transformation and dualit	y principles					3.1 Explain network transformation	Explain network transformation	Textbooks Journals Markers	Reduce a complex network to its series	Guide students to: Reduce a complex network to its	Sample phasor diagrams		3.2 Explain how to reduce a complex network to its series or parallel	Explain the process of reducing a complex network to its series or parallel	Whiteboard Charts Animation.	or parallel equivalent.	series or parallel equivalent.	Electrical circuits		equivalent.	equivalent	Calculators Computer	Derive the formula	Derive the formula for the	Ohmmeter		3.3 Explain star and delta	Explain Star and Delta			transformation of a	Capacitor		networks.	networks	Projectors	transformation of a delta to a star	delta to a star network and vice	Multimeter		3.4 Explain how to derive the formula for the transformation of a	for the transformation of a		network and vice versa.	versa. Measure the total	Electronic trainer		delta to a star network and vice versa.	versa.		Measure the total resistance of combinations of	resistance of combinations of parallel connected			3.5 Explain duality principle.	Explain duality principle.		parallel connected resistors.	resistors.			265 1: 1 1:	-			•						•												capacitance, voltage carrent		connected in series.	in series.				Dbjective 3.0: Understand notes 3.1 Explain network transformation 3.2 Explain how to reduce a complex network to its series or parallel equivalent. 3.3 Explain star and delta networks. 3.4 Explain how to derive the formula for the transformation of a delta to a star network and vice versa. 3.5 Explain duality	Dbjective 3.0: Understand network transformation and duality 3.1 Explain network transformation 3.2 Explain how to reduce a complex network to its series or parallel equivalent. 3.3 Explain star and delta networks. 3.4 Explain how to derive the formula for the transformation of a delta to a star network and vice versa. 3.5 Explain duality principle. 3.6 Explain duality between resistance, conductance 2 Explain network transformation Explain the process of reducing a complex network to its series or parallel equivalent Explain Star and Delta networks Explain how to derive formula for the transformation of a Delta to Star network and vice versa. Explain how to derive formula for the transformation of a Delta to Star network and vice versa. Explain how to derive formula for the transformation of a Delta to Star network and vice versa. Explain how to derive formula for the transformation of a Delta to Star network and vice versa. Explain how to derive formula for the transformation of a Delta to Star network and vice versa.	Dbjective 3.0: Understand network transformation and duality principles 3.1 Explain network transformation Explain the process of reducing a complex network to its series or parallel equivalent. Explain the process of reducing a complex network to its series or parallel equivalent Explain Star and Delta networks Explain Star and Delta networks Explain how to derive formula for the transformation of a Delta to Star network and vice versa. Explain how to derive formula for the transformation of a Delta to Star network and vice versa. Explain how to derive formula for the transformation of a Delta to Star network and vice versa. Explain how to establish duality between resistance, conductance conductance, capacitance, voltage- current	3.1 Explain network transformation 3.2 Explain how to reduce a complex network to its series or parallel equivalent. 3.3 Explain star and delta networks. 3.4 Explain star and delta networks. 3.5 Explain how to derive the formula for the transformation of a delta to a star network and vice versa. 3.6 Explain duality principle. 3.7 Explain duality between resistance, conductance 3.8 Explain duality between resistance, conductance 3.9 Explain network transformation and duality principles 3.1 Explain network transformation and duality principles Textbooks Journals Markers network to its series or parallel equivalent. Animation. Calculators Computer Computer Multinedia for the transformation of a delta to a star network and vice versa. Explain how to derive formula for the transformation of a delta to a star network and vice versa. Explain duality principle. Explain how to establish duality between resistance, conductance capacitance, voltage- current Explain network Textbooks Journals Markers network to its series or parallel charter in the vork its series or parallel equivalent. Charts Animation. Calculators Computer Derive the formula for the transformation of a delta to a star network and vice versa. Measure the total resistance of combinations of parallel connected resistors.	Dijective 3.0: Understand network transformation and duality principles 3.1 Explain network transformation Textbooks Journals Markers Markers Markers Markers Miteboard capuivalent. Explain star and delta networks. 1. Explain star and delta networks. 2. Explain how to derive the formula for the transformation of a delta to a star network and vice versa. 3. Explain duality principle. Explain duality between resistance, conductance Sexplain network transformation and duality principles Textbooks Narkers Whiteboard Charts Compute Charts Compute Charts Compute Charts Animation. Calculators Compute Multinedia Projectors Measure the formula for the transformation of a delta to a star network and vice versa. Measure the total resistance of combinations of parallel connected resistors. Determine by experiment the total resistance of resistors connected resistance of resistors connected resistors connected resistance of resistors connected			1,	T		1				---------	---	--	----------------------------	--	---	-------------------------------			voltage- current			Identify star and delta networks	Identify star and delta networks			General	Objective 4.0: Understand n	etwork theorems and their applic	ations to d.c ar	nd a.c circuits	O			12 -15	4.1 State Thevenin's Theorem.	Explain Thevenin's Theorem.	Textbooks Journals Markers	Verify Thevenin's theorem	Guide students to: Verify Thevenin's theorem.	Sample phasor diagrams			4.2 Explain the basic principle of Thevenin's theorem.	Explain the basic principle of Thevenin's theorem. Explain problems on some	Animation.	Demonstrate the application of Nodal ercuit analysis.	Demonstrate the application of Nodal circuit analysis.	Electrical circuits			4.3 Solve problems on some network using Thevenin's theorem.	network using Thevenin's theorem.	Computer Multimedia	Verify the Millman's theorem	Verify the Millman's theorem	Ohmmeter Capacitor Multimeter			4.4 State Norton's theorem.	Explain Norton's theorem.		Use Thevenin's	Use Thevenin's	Electronic			4.5 Explain the basic principle of Norton's theorem.	Explain the basic principle of Norton's theorem.		theorem to analyze energy delivery from a battery to a load.	theorem to analyze energy delivery from a battery to a load.	trainer			4.6 State the difference between the Norton's theorem and Thevenin's theorem.	Explain the difference between the Norton's theorem and Thevenin's theorem.							4.7 Explain how to solve problems using	Explain how to solve problems using Norton's						 					---------------------------	--------------------------------	---------	----------		Norton's theorem.	theorem.									4.8 State Millman's					theorem.	Explain Millman's theorem.)							4.9 Explain the basic	Explain the basic principle of				principle of Millman's	Millman's theorem.				theorem.					1.105					4.10 Explain how to solve	Explain how to solve network	1			network problems	problems using Millman's				using Millman's	theorem.	. () ·			theorem.					4.10 Ct + D : :	Explain Reciprocity theorem				4.12 State Reciprocity					theorem	Familia de la signaja si				4.125 1 : 4 1 :	Explain the basic principle of				4.13 Explain the basic	reciprocity theorem				principle of					reciprocity theorem	Explain how to solve network				4.14Explain how to solve	problems using Reciprocity				network problems	theorem.				using Reciprocity	theoreting				theorem.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
				theorem.	Explain the Thevenin's and				4.15 Explain the	Norton's theorem to solve				Thevenin's and	electric circuits/networks									Norton's theorem to	problems			---------------------	------------------------------	------		solve electric				circuits/networks	Explain how to solve network	, 0,		problems	problems using Millman's				theorem and Reciprocity			4.16 Explain how to	theorem			solve network				problems using				Millman's theorem				and Reciprocity				theorem											**EVALUATION:** The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will take 10% of the total score, while the remaining 30% will be for the end of semester examination score. ## Use of Electrical and Electronics Instrument	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY							--	------------------------	------------------	--	--	--		COURSE TITLE: Use of Electrical and Electronics	COURSE CODE: EEC 215	CONTACT HOURS: 3					Instrument	CREDIT UNIT: 2	THEORETICAL: 1					YEAR: II SEMESTER: I	PRE-REQUISITE: EEC 125	PRACTICAL: 2				GOAL: This course is designed to acquaint the students with the knowledge and skills of application of electrical/electronic instruments for laboratory and industrial measurements #### **GENERAL OBJECTIVES:** At the end of the course the student should be able to: - 1.0 Understand an oscilloscope. - 2.0 Understand the operation of power meter - 3.0 Understand the factors for selection of electrical and electronic instruments. - 4.0 Understand the importance of electrical instruments in industries - 5.0 Understand controllers and controller design (Proportional Integral Derivative, PID)	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY							---	------------------------	----------------	--	--	--		COURSE TITLE: Use of Electrical and Electronics COURSE CODE: EEC 215 CONTACT HOURS: 3							Instruments	CREDIT UNIT: 2	THEORETICAL: 1					YEAR: II SEMESTER: I	PRE-REQUISITE: EEC 125	PRACTICAL: 2					COLINGE OPECIFICATION THEODETICAL AND DRACTICAL						#### **COURSE SPECIFICATION:** THEORETICAL AND PRACTICAL GOAL: This course is designed to acquaint the students with the knowledge and skills of application of electrical/electronic instruments for laboratory and industrial measurements **GENERAL OBJECTIVE:** 1.0 Understand an Oscilloscope.		THEORETIC	CAL CONTENT		PRA	PRACTICAL CONTENT				------	--	-----------------------------	------------	----------------------	--------------------	------------------	--		Week	Specific Learning	Teachers' Activities	Resources	Specific Learning	Teachers'	Resources				Outcome			Outcome	Activities				1- 4	1.1 Explain the block	Explain the block	Textbooks		Guide Students to:	OSCILLOSCOP				diagram of an	diagram of an	Journals	Draw the block	Draw the block	Е				Oscilloscope	Oscilloscope	Whiteboard	diagram of an	diagram of an							Marker	Oscilloscope	Oscilloscope	Signal generator				1.2 Explain the function of	Explain the function of	Charts							each block and the knobs	each block and the knobs	Animations		Measure D.C	DC/AC power						Computer	Measure D.C voltage	voltage in	supplies and				1.3 Explain the operation	Explain the operation	Projector	in experiments using	experiments using	probe				principles of an	principles of an		OSCILLOSCOPE	OSCILLOSCOPE					OSCILLOSCOPE	OSCILLOSCORE				OSCILLOSCOP							Measure A.C voltage	Measure A.C	E and							in experiments using	voltage in	OSCILLOSCOP							OSCILLOSCOPE	experiments using	E charts.								OSCILLOSCOPE								Measure range of							,		frequencies with	Measure range of					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			OSCILLOSCOPE	frequencies with								Measure phase angles with OSCILLOSCOPE	OSCILLOSCOPE Measure phase angles with OSCILLOSCOPE			---------	--	---	--------------------------------------	---	--	---		General	Objective 2.0: Understand the	e operation of power meter.						5-7	2.1 Define Power meter 2.2 Explain the operation	Explain Power meter Explain the operation of	Textbooks Journals	Sketch Power meter	Guide the students to:	Wattmeter			of the meter in 2.1	the meter in 2.1	Whiteboard Marker	Measure DC and AC	Sketch Power meter	Power supplies			2.3 Explain the use of three meters and two meters in measuring power in three-phase Circuit 2.4 Explain how to calculate Power factor.	Explain the use of three meters and two meters in measuring power in three-phase Circuit Explain how to calculate Power factor.	Charts Animations Computer Projector	Measure DC and AC power for single and three phase circuits Measure power factor	Measure DC and AC power Measure DC and AC power for single and three phase circuits Measure power factor	Single and three phase circuits charts.		General	Objective 3.0: Understand the		etrical and elect	ronic instruments				8-10	3.1 Define electrical and electronic instruments	Explain electrical and electronic instruments	Textbooks Journals Whiteboard						3.2 Explain the factors to be considered when	Explain the factors to be considered when	Marker Charts						selecting electrical and	selecting electrical and	Animations					---------	--	--	------------	-----------------------	--------------------	----------------			electronic instruments:	electronic instruments:	Computer		CV				• Range	• Range	Projector		, 10"				 Accuracy 	 Accuracy 							 Response 	 Response 			V				 Stability 	 Stability 							 Reliability 	 Reliability 							 Sensitivity 	 Sensitivity 						General	3.3 Explain the importance of factors in 3.1 when selecting electrical and electronic instruments: • Range • Accuracy • Response • Stability • Reliability • Sensitivity Objective 4.0: Understand the	Explain the importance of the following factors in selecting electrical and electronic instruments: • Range • Accuracy • Response • Stability • Reliability • Sensitivity	R	Justries				11-12	4.1 Explain the following	Explain the following in	Textbooks		Guide students to:	Resistors			in relation to industries:	relation to industries:	Journals	Determine	Determine	·					Whiteboard	temperature effect on	temperature effect	Semi-conductor			• Conductor	• Conductor	Marker	resistance	on resistance	diodes			Semiconductor P: 1	• Semiconductor	Charts						Diode	• Diode	Animations		Verify temperature	Digital			Temperature	Temperature	Computer	Verify temperature	effect on	thermometers		---------	---	---------------------------------	-----------------	--------------------------------	--------------------	--------------------			Tomporature	Temperature	Projector	effect on	semiconductor				4.2 Explain the electrical	Explain the electrical	Trojector	semiconductor diode	diode	Power supplies			instruments used in	instruments used in				cables			industry	industry		Measure temperature	Measure							range using digital	temperature range				4.3 Explain the importance	Explain the importance of		thermometer	using digital				of measurement	measurement and			thermometer				instruments in	instruments in industry							industry.									Explain the variables in							4.4 Explain the variables	4.2 above							in 4.2 above)						Explain the classification							4.5.5. 1 : .1	instruments into the							4.5 Explain the classification of	following:	11						instruments into the	 Indicating 	3 ,						following:	Recording								Controlling							• Indicating								RecordingControlling							Canaval	U	untualism and controller design	m (Duamantiana)	 Internal Demissative DIE)			13-15	Objective 5.0 Understand co	Explain controllers	Textbooks	i integrai Derivative, PIL	Guide students to:	Computers (with		13-13	J.1 Define controllers	Explain connoncis	Journals	Design a																																																																																																																																																																																																											
simple	Design a simple	installed licensed			5.2 Explain the types of	Explain the types of	Whiteboard	controller circuit	controller circuit	Matlab or Python			controllers	controllers	Marker	Controller cheuit	commoner circuit	software			Controllers	oona onois	Charts								2114115					5.3 Explain the	Explain the importance	Animations			PID control		-----------------------------	-----------------------------	------------	------	----	-------------		importance controllers	controllers to electronic	Computer					to electronic circuits	circuits	Projector					5.4 Explain the properties	Explain the properties of a			20			of a Proportional,	Proportional, Integral and						Integral and Derivative	Derivative (PID)						(PID) controller	controller		CAL				5.5 Explain the uses of			110.				PID controller	Explain the uses of PID						5.6 Explain the circuits of	controller		·				PID controller in	Explain the circuits of PID						function generator and	controller in function						its uses in industries	generator and its uses in							industries)				**ASSESSMENT**: The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will take 10% of the total score, while the remaining 30% will be for the end of the semester examination score ## Telecommunication II	PROGRAMMI	E: NATIONAL DIPLOMA IN	I ELECTRICAL AND ELECTRONIC	S ENGINEERING T	TECHNOLOGY		-------------	--------------------------	-----------------------------	-----------------	------------------		COURSE TITI	LE: Telecommunication II	COURSE CODE: EEC 216		CONTACT HOURS: 3				CREDIT UNIT: 2		THEORETICAL: 1		YEAR: II	SEMESTER: I	PRE-REQUISITE: EEC 126		PRACTICAL: 2	GOAL. This course is designed to equip the students with the knowledge and skills of the principles of telecommunication techniques GENERAL OBJECTIVES: On completion of this course, students should be able to: - 1.0 Know the basic principles of audio-visual (Television) signal transmission. - 2.0 Know various frequency bands within the radio frequency spectrum. - 3.0 Understand the principles of electromagnetic (EM) wave propagation. - 4.0 Understand the principles of radio frequency (RF) wave propagation - 5.0 Understand computer networks	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY									--	-------------------------------	--------------------	----------	------------------------------	---------------------	--------------------------	--------------		COURS	SE TITLE: Telecommunicati	on II	COURSE	CODE: EEC 2	16	CONTACT HOURS: 3							EDIT UNIT: 2 THE ORETICAL: 1					YEAR: II SEMESTER: I PRE			PRE-REC	QUISITE: EEC	C 126	PRACTICAL: 2	,		COURS	SE SPECIFICATION: THE	ORETICAL AND	PRACTI	CAL						This course is designed to eq	•		_		elecommunication techni-	ques		Genera	Objective 1.0: Know the bar			al (Television) s						THEORETI	CAL CONTENT			PRA	CTICAL CONTENT			1-3	1.1 Explain signal	Explain signal		Textbooks	'(10)	Guide students to;	TV sets,			transmission	transmission		Journals	Demonstrate	Demonstrate	frequency						Whiteboard	amplitude	amplitude modulation	generator			1.2 Explain the principle	Explain the princ		Marker	modulation with	with signals in audio				of operation of	operation of telev		Charts	signals in audio	frequency band.	AM and FM			television (TV)	(TV) transmission	on.	Animations	frequency band.		demonstratio			transmission.			Computer		Demonstrate	n units				Explain how visi		Projector.		amplitude				1.3 Explain how vision	sound signals are) '	Demonstrate	demodulation with	Oscilloscope			and sound signals are	generated separa			amplitude	AM modulated signal.				generated separately	transmitted toget	her		demodulation with		RF and AF			and transmitted		Y		AM modulated	Determine the	demonstratio			together	Explain the princ	_		signal.	frequency deviation	n units				operation of Rad	io			with FM modulated				1.4 Explain the principle	frequency (RF)			Determine the	signal.	Receivers.			of operation of Radio	transmission.			frequency deviation					frequency (RF)				with FM modulated	Demonstrate the				transmission.	Explain digital			signal.	frequency					transmission				demodulation with FM									modulated signals.			1.5 E1-1 11-14-1	E1-1- DTV -411-	D		<u> </u>		------------------------------	---------------------------------	---------------------	---------------------	----------		1.5 Explain digital	Explain DTV standards	Demonstrate the				transmission	and tools:	frequency	Determine how radio				 Terrestrial 	demodulation with	receivers operate				transmission	FM modulated				1.6 Explain DTV	• Satellite	signals.	Visit a television			standards and tools:	transmission		station			Terrestrial	• Cable	Determine how radio				transmission	transmission	receivers operate				Satellite						transmission	Explain the features of	Visit a television				Cable transmission	digital transmission	station					standards											1.7 Explain the features of	Explain digital signals					digital transmission	modulation					standards							Explain types of digital					1.8 Explain digital signals	signal modulation					modulation	Signar modulation						Explain the basics of					1.9 Explain types of digital	digital radio					signal modulation	digital radio						Explain the principle of					1.10 Explain the basics	operation of a telephone					of digital radio	circuit with the aid of					or digital radio						1.11 Explain the	diagram.					principle of operation	Example the sensent of					principle of operation	Explain the concept of						. f . 4.11	111						-------	-----------------------------------	-------------------------	-------------	--------------	-------	--			of a telephone circuit	cellular communication							with the aid of								diagram.				, 10'												1.12 Explain the concept								of cellular								communication								Communication							Canan	Objective 2 O. V. commen		 						al Objective 2.0: Know variou			cy spectrum.				5 – 6	2.1 Define radio frequency	Explain radio frequency	Textbooks	·10.							Journals						2.2 Explain radio	Explain radio frequency	Whiteboard,						frequency spectrum.	spectrum.	Marker								Charts						2.3 Explain the frequency	Explain the frequency	Animations						ranges allocated to	ranges allocated to	Computer						different bands:	different bands:	Projector						Extremely Low	Extremely Low	3) 0,0000						Frequency (ELF)	Frequency (ELF)															• Very Low	Very Low							Frequency (VLF).	Frequency							 Low Frequency 	(VLF).							(LF)	Low Frequency							Medium Frequency	(LF)							(MF)	• Medium							High Frequency	Frequency (MF)							(HF)	High Frequency							((() ()	(HF)								(***)							 Very High Frequency (VHF) Ultra High Frequency (UHF) Super High Frequency (SHF) Extremely High Frequency (EHF) 2.4 Explain the functions of the bands in 2.3 	 Very High Frequency (VHF) Ultra High Frequency (UHF) Super High Frequency (SHF) Extremely High Frequency (EHF) 						--------	--	---	---	--	---	---			above.	the bands in 2.3 above						Genera	al Objective 3.0: Understand t	the principles of electro-mag	gnetic wave pro	pagation.	l	<u> </u>		7 – 10	3.1 Define a wave propagation3.2 Explain the function of an aerial antenna as a radiator.3.3 Define a dipole	Explain a wave propagation Explain the function of an aerial antenna as a radiator. Explain a dipole	Textbooks Journals Whiteboard Marker Charts Animations Computer Projector	Use appropriate software to simulate the wave propagation of antenna	Guide students to: Use appropriate software to calculate and simulate the wave propagation of antenna	Appropriate software Aerial antenna Wave guides Charts			3.4 Explain the current and voltage distribution of a dipole.	Explain the current and voltage distribution of a dipole.				Coaxial cables.																	
3.5 Explain aerial	Explain aerial					--	--	----------	----	--		impedance and	impedance and radiation					radiation resistance.	resistance.		10									3.6 Define the following	Explain the following					terms:	terms:					 Isotropic 	 Isotropic radiator 					radiator	 Gain of an aerial 					 Gain of an aerial 	 Beam width of an 	(U)				 Beam width of an aerial. 	aerial.	MI					Explain the polar					3.7 Explain the polar	diagram or the radiation)				diagram or the radiation	pattern of an aerial.					pattern of an aerial.	pattern of an aerian.					pattern of an aerian	Explain the horizontal					3.8 Explain the horizontal	and vertical plane					and vertical plane	patterns of a horizontal					patterns of a horizontal	and vertical dipoles.					and vertical dipoles.							Explain various types of					3.9 Explain various types	aerial antennas					of aerial antennas							Explain the effect of					3.10 Explain the effect of	frequency on aerial					frequency on aerial	dimensions and					dimensions and	performance.					performance.							2 11 Escalain tha factous	Escalain the feetans						--------	-------------------------------------	----------------------------------	-----------------	-------------	--	---			3.11 Explain the factors	Explain the factors							guiding the choice of	guiding the choice of			. ()				aerial antenna.	aerial antenna.						Genera	l Objectives 4.0: Understand	the principle of radio frequ	lency (RF) wave	propagation	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			11 -12	4.1 Explain the following	Explain the following	Textbooks	propuguion				11 12	terms in relation to	terms in relation to wave	Journals								Whiteboard						wave propagation:	propagation:							 Ground waves 	 Ground waves 	Marker						 Sky waves 	 Sky waves 	Charts						 Space waves 	• Space waves	Animations								Computer						4.2 Explain troposphere	Explain troposphere and	Projector						and ionosphere.	ionosphere.							•								4.3 Explain the existence	Explain the existence							and usefulness of the	and usefulness of the							troposphere.	troposphere.	J						tropospiicie.	troposphere.															A A Francis the offerts of	Escalain the Consection							4.4 Explain the effects of	Explain the effects of the							the troposphere on	troposphere on							propagation below	propagation below							30MHZ.	30MHZ.								•							4.5 Explain the various	Explain the various							layers of the	layers of the ionosphere.							ionosphere.	•						L	· ·	1	I .			1					1	<u></u>				--------	---------------------------------------	------------------------------	------------	------------------------------	------------------------------	---------------				Explain critical and							4.6 Explain critical and	maximum usable							maximum usable	frequency.			. 10"				frequency.									Explain optimum							4.7 Explain optimum	working frequency.							working frequency.							Genera	l Objective 5.0: Understand	computer networks						13-15	5.1 Explain computer	Explain computer	Textbooks	الله .	Guide students to:	Router			networks	networks	Journals	Set up a simple cable	Set up a simple cable						Whiteboard	network	network	Access points			5.2 Explain types of	Explain types of	Marker						computer networks:	computer networks:	Charts	Configure a router	Configure a router	Switch			 Wireless fidelity 	 Wireless 	Animations						(WI-FI)	fidelity (WI-	Computer	Connect two routers	Connect two routers or	Ethernet			• Bluetooth	FI)	Projector	or access points	access points	cable			 Intranet 	Bluetooth)`							 Intranet 		Transfer information	Transfer information				5.3 Explain network			using:	using:				topologies:	Explain network		 Wireless 	 Wireless 				• Mesh	topologies:		fidelity	fidelity (WI-				• Ring	Mesh		(WI-FI)	FI)				• Bus	7.2552		• Bluetooth	• Bluetooth					Ring		Intranet	Intranet				5.4 Explain network	Bus Evalain natuvark							devices:	Explain network devices:							• NIC									• NIC						• Switch	• Switch			---	--	---------		• HUB	• HUB			• Repeater	 Repeater 			Gateway	 Gateway 			• Router	• Router			 Access points 				5.5 Explain network protocols:UDPTCP/IP	Explain network protocols: • UDP • TCP/IP	CHILCHI		5.6 Explain OSI model	Explain OSI model		**EVALUATION:** The practical class will be awarded 60% of the total score. The continuous assessments, tests and quizzes will be 10% the total score, while the remaining 30% will be for the end of Semester examination. # Computer Hardware and Software I	PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY								--	----------------------	------------------	--	--	--	--		COURSE TITLE: Computer Hardware and Software I	COURSE CODE: EEC 217	CONTACT HOURS: 3							CREDIT UNIT: 2	THEORETICAL: 1						YEAR: II SEMESTER: I	PRE-REQUISITE: NIL	PRACTICAL: 2						COAT TILL 11 14 14 14 14 14 14 14 14 14 14 14 14	' 1 1 1 1 1 111 /	1 1 1 1 0					**GOAL:** This course is designed to equip students with basic knowledge and skills on computer hardware and specialized software packages. GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Understand the basic functions of a computer - 2.0 Understand the computer hardware components - 3.0 Understand Human-Computer Interaction - 4.0 Understand the Language of software packages. - 5.0 Understand the operation of computer hardware components	PROGE	RAMME: NATIONAL DIPL	OMA IN ELECTRICA	L AND ELECTR	ONICS ENGINEERIN	NG TECHNOLOGY			--	---	---	--	---	---	--------------		COURSE TITLE: Computer Hardware and Software I			OURSE CODE:	EEC 217 CO	ONTACT HOURS: 3					CR	EDIT UNIT: 2	Ţ	HEORETICAL: 1			YEA	AR: II SEMESTER: I	PR	E-REQUISITE:	NIL P	RACTICAL: 2			COURS	SE SPECIFICATION: THE	ORETICAL AND PRA	CTICAL		*			GOAL:	This course is designed to eq	uip students with basic l	knowledge and sk	cills on computer hardw	vare and specialized software	re packages.		General	Objective 1.0: Understand the	he basic functions of a c	omputer.	'(10),				THEO	RETICAL CONTENT			PRACTICAL CONT	TENT			Week	Specific Learning	Teacher's Activities	Resources	Specific Learning	Teacher's Activities	Resources			Outcome			Outcome				1-3	1.1 Define computer.1.2 Explain the evolution of computer.	Explain computer Explain the evolution of computer.	Whiteboard Marker Textbooks Computer Internet	Identify computer components	Guide the students to: Identify computer components	Computer			1.3 Explain the application of computers.1.4 Explain the impact of technology on Personal Computer (PC).	f Explain the application computers Explain the impact of technology on Personal Computer (PC)		Dismantle a computer system and show the: • RAM card • Hard Disk • Processors.	-				1.5 Differentiate between hardware and software.	Explain the differences between hardware and software.		Identify: • Input mechanisms Output Mechanisms	Identify: • Input mechanisms Output Mechanisms				1.6 Explain the input-process output algorithm (hardware):	-Explain the input-process- output algorithm (hardware).						--------	--	---	-----------------------	------------------------	--	-------------------------			1.7 Explain microprocessors, inputs and outputs devices	Explain microprocessors, inputs and outputs devices	,(HAIL					1.8 Explain the need for data storage	Explain the need for data storage.																																																											
1.9 Explain how data is stored in: RAM ROM Fixed discs Removable discs | Explain how data is stored in: • RAM • ROM • Fixed discs Removable discs | | | | | | Genera | l Objective 2.0: Understand t | the computer hardware com | ponents | | | • | | 4-6 | 2.1 Define computer. | Explain computer. | Whiteboard
Marker | Assemble computer sub- | Guide the students to: Assemble computer | Computer auxiliary unit | | | 2.2 Explain types of computers | Explain types of computers | Textbooks
Computer | units. | sub-units | Computer | | | | Internet | Identify the memory, | Identify the memory, | peripheral | |--|-------------------------------------|-----------|-------------------------------------|--------------------------------|--------------| | 2.3 Enumerate components | | Projector | ports, CPU and power | ports, CPU and power | 1 1 | | of computer hardware: | of a computer hardware: | | supply unit | supply unit | | | Input/output | Input/output | | | | Central | | System Unit | System Unit | | _ | • | processing | | Processing unit | Processing unit | | CMOS battery for | CMOS battery for | units (CPU) | | Storage devices | Storage devices | | memory retention. | memory retention. | | | | | | | | I/O devices, | | 2.4 List major subunits of a | Explain major subunits of | | Identify the various types | | tools and | | computer: | a computer: | | of port: | types of ports: | measuring | | • Mother board (ATX, | Mother board | | • Parallel | Parallel | instruments. | | Micro-ATX, and | (ATX, Micro- | . (| • Serial | • Serial | Scraps of | | Mini-ITX Form | ATX, and Mini- | | • USB | • USB | computer | | Factors), | ITX Form | | | | system. | | Drives (Hard disk, | Factors), | \circ | Identify the components | Identify the | | | Floppy, CD-ROM, | • Drives (Hard | | of a computer hardware: | components of a | | | Zip), | disk, Floppy, CD- |) · | • Input/output | computer hardware: | | | • Ports. | ROM, Zip), | | System Unit | • Input/output | | | | • Ports. | | Processing unit | System Unit | | | 2.5 Explain SSD and HDD | Compare SSD and HDD | | Storage | Processing | | | technologies | technologies | | devices | unit | | | | | | | Storage | | | 2.6 Explain the technical | Explain the technical | | | devices | | | aspects of cables | aspects of cables | | | | | | connecting the units. | connecting the units. | | | | | | | | | | | | | | Explain how data is | | | | | | transferred down the | | | | | | | | 11 11 0 | | 1 | 1 | | T | |--------|-------------------------------|-----------------------------------|-------------|--------------------|--------------------|-------------| | | cables and the type of | transferred down the | | | | | | | hand- shake methods | cables and the type of | | | , C Y | | | | used. | hand- shake methods | | | | | | | | used. | | | | | | Genera | l Objective 3.0: Understand H | Human-Computer Interaction | n. | | | | | | | | | | | _ | | 7-8 | 3.1 Explain the concept of | Explain the concept of | Whiteboard | Access computers | Guide students to: | Computers | | | operating system | operating system | Marker | correctly through | Access computers | | | | • PC-DOS/MS-DOS | PC-DOS/MS-DOS | Textbooks | Windows operating | correctly through | Operating | | | • Windows | Windows | Computer | system such as: | Windows operating | system | | | Linux Unix | Linux Unix | Internet | • Open/Close a | system such as: | | | | | | Projector 🧨 | window | Open/Close a | Application | | | 3.2 Explain the advantage of | Explain the advantage of | | Program Manager | window | packages | | | 1 | the Windows operating | | Button bars/scroll | | | | | System. | System. | _ ' \ ' | bars/ menu bars | Manager | | | | | | Q_ | Moving from one | Button | | | | 3.3 Explain the windows | Explain the windows | | Window to | bars/scroll | | | | menu and tools | menu and tools | | another | bars/ menu | | | | menu and tools | menu and tools | | anomei | bars | | | | 3.4 Explore modern | Explore modern operating | | | | | | | * | | | | Moving from | | | | operating systems like: | systems like: | | | one Window | | | | • Windows 11 | • Windows 11 | | | to another | | | | Linux distributions | Linux | | | | | | | MacOS. | distributions | | | | | | | | MacOS. | | | | | | | | | | | | | | | 3.5 Explain the advantage of: | Explain the advantage of: | | | | | | | Windows Operating | • Windows | | | | | | 1 | | T | 1 | | | ı | |---------|--------------------------------------|----------------------------------|------------|-----------------------------|---------------------------|-------------| | | System | Operating System | | | | | | | Windows menu and | Windows menu | | | CY | | | | tools | and tools | | | | | | | | | | | | | | | 3.6 Explain mobile | Explain mobile | | | | | | | operating systems | operating systems | | | | | | | (Android, iOS) and | (Android, iOS) and | | | | | | | their user interface | their user interface | | | | | | General | Objective 4.0: Understand Appl | ication software packages. | l | .40 | | | | | | | | | | | | 9-10 | 4.1 Explain file management | Explain file management | Whiteboard | Create a file and folder | Guide students to: | Computers | | | | | Marker (| | Create a file and folder | | | | 4.2 Explain how to manage | Explain how to manage | Textbooks | Manipulate files (moving, | Manipulate files | Printers | | | files. | files. | Computer | copying, saving, deleting). | (moving, copying, | | | | | | Internet | | saving, deleting). | Papers | | | 4.3 Explain the concepts of | Explain the concepts of | Projector | Manipulate Print Manager. | | | | | software packages such | software packages such | | | Manipulate Print | Computers | | | as: | as: | | _ | Manager | | | | MSOffice | MSOffice | | Demonstrate the | | Application | | | Lotus SmartSuite | Lotus SmartSuite | | competent use of a word- | Demonstrate the | packages | | | MS Encarta | MS Encarta | | processing package such | competent use of a | | | | | | | as: | word-processing | | | | 4.4 Explain the steps | Explain the steps involved | | MSWord (or | package such as: | | | | involved in installation of | | | equivalent | MSWord (or agrivelent | | | | MS-Words. | Words. | | standard). | equivalent | | | | 10 | | | • Entering text | standard). | | | | 4.5 Explain the steps | Explain the steps involved | | • Formatting text | • Entering text | | | | involved to competently | to competently operate | | (emboldening, font | • Formatting text | | | | mvorved to competentry | to competently operate | | size, italicizing). | (emboldening, | | | MS word or equivalents standard. Explain the different features of the software Explain cloud-based applications and collaborative tools: e.g.: • Google Workspace | | Creating and Saving text files Editing and moving text Importing objects Spelling and Grammar Checking Create tables, text | Saving text files Editing and moving text Importing objects Spelling and | |--|---|--|---| | Explain the different features of the software Explain cloud-based applications and collaborative tools: e.g.: • Google Workspace | | Editing and moving text Importing objects Spelling and Grammar Checking | Creating and Saving text files Editing and moving text Importing objects Spelling and | | Explain cloud-based applications and collaborative tools: e.g.: • Google Workspace | | text Importing objects Spelling and Grammar Checking | Saving text files Editing and moving text Importing objects Spelling and | | Explain cloud-based applications and collaborative tools: e.g.: • Google Workspace | | Importing objects Spelling and Grammar Checking | Editing and moving textImporting objectsSpelling and | | Explain cloud-based applications and collaborative tools: e.g.: • Google Workspace | | Spelling and Grammar Checking | moving text Importing objects Spelling and | | applications and collaborative tools: e.g.: • Google Workspace | | Grammar
Checking | Importing objectsSpelling and | | applications and collaborative tools: e.g.: • Google Workspace | | Checking | Spelling and | | applications and collaborative tools: e.g.: • Google Workspace | | | 1 0 | | collaborative tools: e.g.:GoogleWorkspace | | • Create tables, text | | | • Google Workspace | | | Grammar | | Workspace | _ | boxes, equations. | Checking. | | • | | Type a short | • Create tables, text | | Microsoft 365 | | document and | boxes, equations. | | • Wheresoft 303 | | save it. | • Type a short | | Explain axhan agazmity | | Edit a document | document and | | • • | | and carryout a | save it. | | • | | • | Edit a document | | sonware packages. | | Demonstrate the | and carryout a | | | | use of tables. | spelling check. | | | | Use the Internet to | Demonstrate the | | | | retrieve | use of tables. | | | | information. | Use the Internet | | | |
World Wide | to retrieve | | | | Web(WWW) | information. | | 00 | | ` ′ | World Wide | | | | | Web(WWW) | | | | | Download | | • | | | information | | | | | Paste retrieved | | | | an appropriate | - Tasto Toniovod | | 1 | Microsoft 365 Explain cyber security implications of using oftware packages. | Explain cyber security mplications of using | save it. Explain cyber security implications of using oftware packages. Save it. Edit a document and carryout a spelling check. Demonstrate the use of tables. Use the Internet to retrieve information. | | | | | | application | information into | | |--------|--|-----------------------------|--------------|--------------------------------------|-----------------------|-----------------| | | | | | Use-mail to send | an appropriate | | | | | | | and receive | application | | | | | | | messages. | Use-mail to send | | | | | | | National and | and receive | | | | | | | international e | messages. | | | | | | | mail | National and | | | | | | | E-mail attachments | international e- | | | | | | | (sending& receiving) | mail | | | | | | | | E-mail attachments | | | | | | | 11/2 | (sending& receiving) | Genera | l Objective 5.0: Understand the | he operation of computer ha | ardware comp | onents | | | | 11-14 | 5.1 Explain the operations | Explain the operations | Whiteboard | Demonstrate how to start | Guide students to: | PC with | | | of computer | of computer | Marker | and shut down a | | Presentation | | | 1 | | Textbooks | computer system. | Demonstrate how to | package | | | 5.2 Explain: | Explain: | Computer | | start and shut down a | installed and | | | Memory | Memory | Internet | Identify different types | computer system. | connected to | | | • Ports | Ports | Projector | of cables and connectors. | | multimedia | | | • CPU | OPI J | 3 | | Identify different | projector | | | Power supply | Power supply | | | types of cables and | Computer | | | | Power supply | | Demonstrate how to | connectors. | auxiliary units | | | Battery supply for many retentions | Battery supply for memory | | connect Computer Ports | | | | | memory retention. | | | to peripherals. | Demonstrate how to | Computer | | | 5.2 Emploin the many | retention | | 1 L P | connect Computer | peripherals, | | | 5.3 Explain the protocols of | | | Demonstrate how you | Ports to peripherals. | tools and | | | | | | permensioned now you | r one to peripherais. | vooib uiiu | | various port: Parallel, | Explain the protocols of | can setup and connect a | | measuring | |------------------------------------|-----------------------------|-------------------------|-----------------------|---------------| | Serial; USP. | various port: Parallel, | printer to a computer. | Demonstrate how you | instruments | | Serial, OSI. | Serial; USP. | printer to a computer. | can setup and connect | mstruments | | 5.4 Explain the functions of | Schai, OSi . | | a printer to a | Central | | the Ports listed 2.3 | Explain the functions of | Setup some printing | computer. | processing | | above. | the Ports listed 2.3 above. | exercise | computer. | units | | above. | the Ports fisted 2.3 above. | exercise | G - L | umus | | 5 5 E1-: 41 | | I I A'Co | Setup some printing | I/O 1 | | 5.5 Explain the | | Identify a modern and | exercise | I/O devices. | | characteristics of | Explain the characteristics | draw a block diagram of | T1 .:0 1 1 | | | monitors: | of monitors: | a modem | 1 | Computer | | Scanning Speed | Scanning Speed | | draw a block diagram | toolboxes | | • Colour resolution, | • Colour resolution, | Draw a block diagram | of a modem | | | etc. | etc. | showing the | | Electrostatic | | | | interconnection of the | Draw a block | discharge | | 5.6 Explain the functions and | Explain the functions and | Sub-units of the | diagram showing the | hand. | | operation of monitors | operation of monitors | motherboard. | interconnection of | | | | | | the Sub-units of the | Scraps of | | 5.7 Explain how to select | Explain how to select | | motherboard. | computer | | monitors for different | monitors for different | | | system. | | mother board's speed and | mother board's speed and | | | | | resolution. | resolution | | | | | | | | | | | 5.8 Explain the operation of | Explain the operation of a | | | | | aprinter. | printer. | | | | | | | | | | | 5.9 List different types of | Explain different types | | | | | | of printers e.g.: | | | | | printers e.g.: | or printers e.g | | | | | • Dot | • Dot | | | | | |------------------------------|------------------------------|---------------------------------------|-------|----|--| | • Laser | • Laser | | | CY | | | • Deskjet, etc. | • Deskjet, etc. | | | | | | 6.10 Explain the difference | Explain the difference | | | | | | between various types of | f between various types of | | | | | | Printer heads. | Printer heads. | | | | | | | | | | | | | 6.11 Explain the operation o | f Explain the operation of a | | ·40' | | | | a modem and its | modem and its | | 1/10. | | | | classification such as: | classification such as: | | | | | | • V Series | • V Series | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | • X Series | • X Series | | | | | | | | | | | | | 6.12 Explain the concepts of | Explain the concepts of | \ | | | | | networking. | networking. | | | | | **ASSESSMENT:** The continuous assessment, tests and quizzes will be awarded 60% of the total score. The end of the Semester Examination will make-up for the remaining 40% of the total score. ## Research Methods in Electrical and Electronics Engineering Technology | PROGRAMME: NATIONAL DIPLOMA ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | | |---|----------------------|------------------|--|--|--|--|--|--| | COURSE TITLE: Research Methods in Electrical and Electronics | COURSE CODE: EEC 218 | CONTACT HOURS: 2 | | | | | | | | Engineering Technology | CREDIT UNIT: 2 | THEORETICAL: 2 | | | | | | | | YEAR: II SEMESTER: I | PRE-REQUISITE: | PRACTICAL:0 | | | | | | | **GOAL:** This course is designed to equip the student with the knowledge and skills of Research Methods in Electrical and Electronics Engineering Technology GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Understand the Concept of Research in Electrical and Electronics Engineering Technology - 2.0 Understand Terminologies in Electrical and Electronics Engineering Research - 3.0 Understand the Methods of Research in Electrical and Electronics Engineering - 4.0 Understand Sampling Techniques in Electrical and Electronics Engineering Research - 5.0 Understand Data Collection Techniques in Electrical and Electronics Engineering Research - 6.0 Understand Research Report Writing and Presentation in Electrical and Electronics Engineering | PROGR | AMME: NATIONAL DIPLOM | A ELECTRICAL AN | D ELECTRONI | CS ENGINEERING TI | ECHNOLOGY | <u> </u> | |----------|---|---------------------------------|----------------------|---------------------------|------------------------|-------------| | | E TITLE: Research Methods in | COURSE CODE | : EEC 218 | CON | TACT HOURS: 2 | | | | l and Electronics Engineering | CREDIT UNIT: | 2 | TH | EORETICAL: 2 | | | Technolo | 63 | | | | | | | YEAR: | | PRE-REQUISITE | | PR | CTICAL: 0 | | | | E SPECIFICATION: THEORI | | | 11 CD | 1 ' 1 4 ' 1 11 | 71 / ' | | | This course is designed to equipring Technology | the student with the Kn | lowledge and ski | ills of Research Method | is in Electrical and I | Electronics | | | Objective 1.0: Understand the O | Concept of Research in | Electrical and E | Electronics Engineering | Technology | | | THEOR | RETICAL CONTENT | • | | PRACTICAL CONT | ENT | | | Week | Specific Learning Outcome | Teacher's Activities | Resources | Specific Learning Outcome | Teacher's Activities | Resources | | 1-3 | 1.1 Define research | Explain research | Textbooks Journals | | | | | | 1.2 Explain the importance in EEET: | Explain the importance in EEET: | Computer
Internet | | | | | | • Advancements in | Advancements in | | | | | | | IoT | IoT | Marker | | | | | | • Power systems. | • Power systems. | Marker Board | | | | | | | Explain types of research: | | | | | | | • Quantitative, | • Quantitative, | | | | | | | • Qualitative, | • Qualitative, | | | | | | | Mixed Methods. | • Mixed Methods. | | | | | | | | ~ | | | | | | | 1 1 | Explain the purpose of | , | | | | | | | research and its | | | | | | | application in EEET: | application in EEET: | | | | | | | Efficiency improvement, fault detection, etc. | Efficiency improvement, fault detection, etc. Explain sources of | | | SCA | | |---------|---|---|---|---------------------|-----|---| | | knowledge in engineering | | | CAL | | | | | Standards,Experimentation. | Standards,Experimentation. | | MIC. | | | | | scientific research | Explain the elements of scientific research methods. | 160 | | | ı | | General | Objective 2.0: Understand Terr | ninologies in Electrical | and Electronics E | ngineering Research | | | | 4-6 | 2.1 Define evidence, fact, and data as they apply to EEET. | _ | Textbooks
Journals
Computer
Internet | | | | | | 2.2 Explain the following: Concepts Constructs Propositions Variables
Assumptions. | Explain the following: | | | | | | | 2.3 Explain types of variables | Explain types of variables | | | | | | | Dependent, Independent Controlled). 2.4 Explain conceptualization and operationalization in EEET research. | Dependent, Independent Controlled). Explain conceptualization and operationalization in EEET research. | | | | | |--------|--|---|---|-------------------------|---|--| | Genera | l Objective 3.0: Understand the l | I . | Electrical and E | Electronics Engineering | I | | | 7-8 | 3.1 Define research methods | Explain research method | Textbooks
Journals
Computer | | | | | | 3.2 Explain the importance of research methods in EEET. | Explain the importance of research methods in EEET. | Internet Projector Marker Marker Board Research | | | | | | 3.3 Explain types of research methods: Experimental, Simulation-based Analytical. | Explain types of research methods. • Experimental, • Simulation-based • Analytical. | reports
Internet | | | | | | 3.3 Explain methodologies under each type in 3,3 Circuit testing Simulation of power | Explain methodologies under each type in 3.3 • Circuit testing | | | | | | | systems | Simulation of power systems | | | CA | | |---------|--|--|-----------------------|-------------------------------|--------------------------------------|----------------------| | | Objective 4.0: Understand Sam | | | | | _ | | 9-11 | 4.1 Define sampling | Explain sample | Textbooks
Journals | Identify sampling techniques | Guide students: Identify sampling | Sample project/sam | | | 4.2 Explain census in the context of EEET. | Explain Census in the context of EEET. | Computer
Internet | Use the selected | techniques | ple report
Street | | | | | Projector
Marker | technique to a draw
sample | Use the selected technique to a draw | Directories | | | 4.3 Explain methods of sampling: | Explain methods of sampling: | Marker Board | | sample | | | | Probability | Probability | | | | | | | Non-probability. | Non- probability | | | | | | | 1 1 | Explain sampling techniques under each method in 4.3 | 6 | | | | | | 4.5 Explain factors influencing | Explain factors | D' | | | | | | the choice of sampling | influencing the choice | | | | | | | technique | of sampling technique | | | | | | General | Objective 5.0: Understand Data | a Collection Techniques | s in Electrical ar | nd Electronics Engineering | g Research | | | 12-13 | 5.1 Define data | Explain Data | Textbooks
Journals | Identify types of data | Guide students: Identify types of | Sample data | | | 5.2 Explain types of data: | Explain types of Data | Computer | | data | | | | • Quantitative, | • Quantitative, | Internet | | | | | | Qualitative | Qualitative | Projector
Marker | Identify sources of data | Identify sources of data | | | | 5.3 Explain sources of data: | Explain sources of | Marker Board | | | | | | Experimental | data: | | Use data collection | Use data collection | | | results, | Experimental | | techniques to conduct | techniques to | | |--|--------------------------------------|------------------|----------------------------|-----------------------|---------| | Manufacturer | results, | | research | conduct research | | | datasheets. | Manufacturer | | | | | | | datasheets. | | Use statistical tools to | Use statistical tools | | | | | | present data | to present data | | | 5.4 Explain data collection | Explain data | | | | | | techniques: | collection techniques | | | • | | | • Use of multimeters, | • Use of | | | | | | Oscilloscope | multimeters, | | | | | | readings | Oscilloscope | | | | | | | readings | | | | | | | | | | | | | 5.5 Define data analysis | Explain data analysis | | | | | | 5.6 Explain methods of data | Explain methods of | | | | | | analysis: | data analysis | | | | | | Fourier analysis, | Fourier analysis | | | | | | Statistical | Statistical | | | | | | evaluations | evaluations | | | | | | | | | | | | | 5.7 Explain tools for data | Explain tools for data | \mathbf{Y} | | | | | presentation: | presentation: | | | | | | • Tables | Tables | | | | | | • Charts | Charts | | | | | | Graphs. | Graphs | | | | | | | | | | | | | General Objective 6.0: Understand Rese | earch Report Writing a | and Presentation | in Electrical and Electron | ics Engineering | | | 14-15 6.1 Define report writing and | Explain research | Textbooks | Write research report | Guide students to | Sample | | presentation | report writing and | Journals | | write research | reports | | | presentation | Computer | | report. | | | | | Internet | | | | | 6.2 Explain the stages of | Explain stages of | Projector | | | | | writing a research report: | research reports | Marker | 1 | | |---|----------------------------------|--------------|----|--| | Introduction | writing: | Marker-Board | CV | | | Methodology | Introduction | | | | | • Results. | Methodology | | | | | | • Results. | | | | | 6.3 Explain the process of | Explain how to | | | | | research idea generation | generate research | | | | | _ | ideas | | | | | 6.4 Explain proposal writing: | Explain how to write | | | | | • Objectives | research reports | | | | | • Problem statements | | | | | | 6.5 Explain the use of | Explain the use of | | | | | technologies in research: | new technologies in | | | | | MATLAB | EEET research. | | | | | Simulation tools | | | | | | | Explain ethical issues | | | | | 6.6 Explain ethical issues in | in EEET research | | | | | EEET research: | | | | | | Intellectual property). | | | | | EVALUATION: CA 40% EXAMINATION: 60% EAR TWO, SEMESTER TWO ## Trigonometry and Analytical Geometry | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | | |--|----------------------|------------------|--|--|--|--|--|--| | COURSE Trigonometry and Analytical Geometry | COURSE CODE: MTH 221 | CONTACT HOURS: 2 | | | | | | | | | CREDIT UNIT: 2 | THEORETICAL: 2 | | | | | | | | YEAR: II SEMESTER: II | PRE-REQUISITE: | PRACTICAL: 0 | | | | | | | GOAL: This course is designed to acquaint students with the basic knowledge of Trigonometry and Analytical Geometry **GENERAL OBJECTIVES:** On completion of this course, the student should be able to: - 1.0 Understand the manipulation of trigonometric equations. - 2.0 Understand the concept of mensuration and its application to engineering problems - 3.0 Understand the concept of analytical geometry and their applications - 4.0 Understand the concept of Parabola, ellipse and hyperbola. | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | | | |--|------------------------------------|-----------------------------|----------------|---------------------|-----------------------|-----------|--|--|--| | COURSE Trigonometry and Analytical Geometry | | | COURSE CO | ODE: MTH 221 | CONTACT HOURS: 2 | | | | | | | | | CREDIT UN | IT: 2 | THEORETICAL: 2 | | | | | | YEAR: | II SEMESTER: II | | PRE-REQUI | ISITE: | PRACTICAL: 0 | | | | | | COUR | SE SPECIFICATION: THEORE | ETICAL AND PRACTICA | L | | | | | | | | GOAL | : This course is designed to acqua | int students with the basic | knowledge of T | Trigonometry and A | nalytical Geometry | | | | | | Genera | l Objective 1.0: Understand the m | anipulation of trigonometri | c equations. | | | | | | | | THEO | RETICAL CONTENT | | | PRACTICAL C | ONTENT | | | | | | Week | Specific Learning Outcome | Teachers Activities | Resources | Specific Learnin | g Teachers Activities | Resources | | | | | WCCK | | | | Outcome | | | | | | | 1-3 | 1.1 Convert sums and | Convert sums and | Textbooks | | | | | | | | 1-3 | differences of trigonometric | differences of | Lecture | | | | | | | | | ratios to products. | trigonometric ratios to | notes | | | | | | | | | | products. | Whiteboard | | | | | | | | | | | Marker | | | | | | | | | 1.2 Prove the sine and cosine | Prove the sine and | | | | | | | | | | formulae of triangles | cosine formulae of | | | | | | | | | | | triangles | | | | | | | | | | 1.3 Solve problems triangles | | | | | | | | | | | using the sine and cosine | Solve problems triangles | | | | | | | | | | formulae e.g.:-The sides | using the sine and cosine | | | | | | | | | | | formulae e.g.:-The sides | | | | | | | | | | 5cm, and 6cm respectively. | a,b,c, of a triangle are | | | | | | | | | | Find the angles. | 4cm, 5cm, and 6cm | | | | | | | | | | | respectively. Find the | | | | | | | | | | | angles. | | <u> </u> | | | | | | |
 | | | | | | |--|----------------------------|----|---|-------|--| |
1.4 Calculate angles of | | | | | | | elevation and depression | Calculate angles of | | | · C Y | | | using trigonometric ratios | elevation and depression | | • | | | | e.g.:- From the top of a tree | using trigonometric | | | | | | 120m high an observer
sees | ratios e.g.:- From the top | | | | | | a boat 560m away. | of a tree 120m high an | | | | | | Calculate the angle of | observer sees a boat | | | | | | depression. | 560m away. Calculate | | | | | | | the angle of depression. | | | | | | | | | | | | | 1.5 Compute bearings, heights | Compute bearings, | | | | | | and distances of | heights and distances of | CX | | | | | inaccessible objects and | inaccessible objects and | | | | | | projections, | projections,e.g A man | | | | | | e.g A man walks 3km due | walks 3km due North, | | | | | | North, and the 3km | and the 3km N.52° W | | | | | | N.52° W. How far is the | How far is the man from | | | | | | man from his starting point? | his starting point? What | | | | | | What is his bearing from his | is his bearing from his | | | | | | original position. | original position. | | | | | | | | | | | | | | Derive half angle | | | | | | | formulae from sin, cos | | | | | | from sin, cos and tan. | and tan. | | | | | | | | | | | | | 1.7 Define inverse circular | Define inverse circular | | | | | | function. | function. | | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | | | | | | | | 1 | L | ı | | | | |--------|------------------------------------|-----------------------------|-------------------|-----------------------|----|-----------| | | 1.8 Explain inverse circular | Explain inverse circular | | | | | | | functions graphically. | functions graphically. | | | | | | | | | | | | | | | 1.9 Solve problems involving | Solve problems involving | | | | | | | 1.8 and e.g.:- Draw the | 1.8 and e.g.:- Draw the | | | | | | | graph of 1/(cos 2θ) Taking | graph of $1/(\cos 2\theta)$ | | | | | | | values from0° to | Taking values from0° to | | | | | | | 90° inclusive. | 90° inclusive. | | | | | | | | Apply the concepts in 1.8 | | | | | | | 1.10 Apply the concepts in 1.8 | above to three | | | | | | | above to three dimensional | dimensional problems. | | | | | | | problems. | | CX | | | | | Genera | al Objective 2.0: Understand the c | oncept of mensuration and i | ts application to | o engineering problen | ns | | | 4 - 5 | 2.1 Explain circular measure. | Explain circular | Lecture | | | State the | | | | measure. | notes | | | relation | | | 2.2 State the relation between | | Textbooks | | | between | | | radians and degrees | Explain the relation | Charts | | | radians | | | | between radians and | Whiteboard | | | and | | | | degrees | Marker | | | degrees | | | 2.3 Prove the formulae for arc | | | | | | | | length and area of a sector. | Prove the formulae for | | | | | | | - | arc length and area of a | | | | | | | | sector. | | | | | | | 2.4 Identify segment and chord | V | | | | | | | of a circle. | Explain segment and | | | | | | | | chord of a circle. | | | | | | | 2.5 Determine the area of a | | | | | | | | segment and the chord of | Determine the area of a | | | | | | length of a given circle. | segment and the | | |--------------------------------------|---|---| | | chord of length of a | | | | given circle. | | | 2.6 Calculate the surface areas | | | | and volumes of simples | Calculate the surface | | | shapes such as cylinder, | areas and volumes of | | | sphere and cone. E.g. A | simples shapes such as | | | solid sphere has radius 8cm. | cylinder, sphere and | | | Calculate its volume. | cone. E.g. A solid sphere | | | | has radius 8cm. | | | 2.7 Determine the areas and | Calculate its volume. | | | volumes of irregular shapes | | | | applying Simpsons rule. | Determine the areas and | | | | volumes of irregular | | | | shapes applying | | | 2.8 Apply mid-ordinate rule to | Simpsons rule. | | | determine the areas and | | | | volumes applying mid- | Apply mid-ordinate rule | | | ordinate rule. | to determine the areas | | | | and volumes applying | | | | mid-ordinate rule. | | | eneral Objective 3.0: Understand the | concept of analytical geometry and their applications | • | | | 2.1.5. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | | T 4 | | D 1 4 | |-----|---|-------------------------------|------------|-------|------------| | | 3.1 Explain two dimensional | Explain two dimensional | Lecture | | Relate | | | coordinate systems: | coordinate systems: | notes | (Y) | Cartesian | | | Cartesian and Polar | Cartesian and Polar | Textbooks | | coordinate | | | coordinate systems. | coordinate systems. | Charts | | to polar | | | | | Whiteboard | | coordinate | | | | Explain plotting and | Marker | | S | | | 3.2 Explain plotting and | sketching of graphs w.r.t. | | | | | | sketching of graphs w.r.t. the | the two coordinate | | | | | | two coordinate systems. | systems. | | | | | | | | | | | | | 3.3 Relate Cartesian coordinate | Relate Cartesian | | | | | | to polar coordinates. | coordinate to polar | CX | | | | | | coordinates. | | | | | 6.0 | 3.4 Explain the slope of a line in | | | | | | 6-9 | relation to the above | Explain the slope of a | | | | | | concepts in 3.3. above. | line in relation to the | | | | | | 1 | above concepts in 3.3. | | | | | | 3.5 Explain the intercept of a | above. | | | | | | line. | | | | | | | inter- | Explain the intercept of a | | | | | | | line. | | | | | | 3.6 Derive the formula for the | inic. | | | | | | gradient of line | Derive the formula for | | | | | | | the gradient of line | | | | | | passing unough two points. | passing through two | | | | | | 2.7 Dariya the aquation of | passing unough two
points. | | | | | | 3.7 Derive the equation of a | points. | | | | | | straight line given the | Davissa 41. a a secutiva s | | | | | | gradient and the co- | Derive the equation of | | | | | ordinates of a point. | straight line given the | | | | |--|--|----|--|--| | | gradient and the co- | | | | | 3.8 Reduce a given linear | ordinates of a point | | | | | equation to the intercept | | | | | | form. $x/a + y/b = 1$ | Reduce a given linear | | | | | | equation to the intercept | | | | | 3.9 Determine the coordinates of | form. $x/a + y/b = 1$ | | | | | the point of intersection of | | | | | | two straight lines. | Determine the | | | | | | coordinates of the point | | | | | 3.10 Define locus | of intersection of two | | | | | | straight lines. | CX | | | | 3.11 Derive the slope-intercept | | | | | | form of the equation of a | Define locus | | | | | straight line: $y = mx + c$ | | | | | | | Derive the slope- | | | | | 3.12 Derive the point - slope | intercept form of the | | | | | form of the equation of a | equation of a straight | | | | | straight line: $y - y_1 = m(x - y_1)$ | line: $y = mx + c$ | | | | | x_1). | \circ | | | | | | Derive the point – slope | | | | | 3.13 Derive the double – point | form of the equation of a | | | | | form of the equations of | straight line: $y - y_1 =$ | | | | | the | $\mathbf{m}(\mathbf{x}-\mathbf{x}_1).$ | | | | | straight line: $y - y_1 = \underline{y_2}$ | | | | | | <u>yı</u> | Derive the double – | | | | | $(x - x1) x_2 - x_1$ | point form of the | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | equations of the straight | | | | |
 | | | | | |--|--|---|--|--| | 3.14 Derive the perpendicular | line: $y - y_1 = \underline{y_2} - \underline{y_1} (x -$ | | | | | form of the equation of a | $(x_1) x_2 - x_1$ | | | | | straight line | | | | | | | Derive the perpendicular | | | | | 3.15 Solve examples of 3.11 | form of the equation of a | | | | | to 3.14 above. | straight line | | | | | | | | | | | 3.16 Find the angle (Q) | Solve examples of 3.11 | | | | | between two lines whose slopes, (m ₁ , and m ₂) are | to 3.14 above. | • | | | | Known: $Q = \tan (m_2 - m_1)/1$ | Find the angle (Q) | | | | | $+ m_1 m_2$ | between two lines whose | | | | | | slopes, (m ₁ , and m ₂) are | | | | | | Known: $Q = \tan (m_2 -$ | | | | | 3.17 Determine the conditions | $m_1)/1 + m_1 m_2$ | | | | | for two lines to be parallel | | | | | | and to be perpendicular. | Determine the | | | | | | conditions for two lines | | | | | 3.18 Derive the expression for | to be parallel and to be | | | | | the perpendicular distance | perpendicular. | | | | | from a point to a line. | | | | | | | Derive the expression | | | | | 3.19 Draw a circle. | for the perpendicular | | | | | | distance from a point to | | | | | 3.20 Derive the equation of a | a line. | | | | | circle with center at the | | | | | | origin and radius r. | Draw a circle. | | | | | \ \(\alpha\)\\ | | | | | | | • | | | | | | T | T | ı | 1 | | |-------|------------------------------------|----------------------------|----------------|-----------|------------| | | 3.21 Derive the equation of a | Derive the equation of a | | | | | | circle with center | circle with center at the | | | | | | outside the origin. | origin and radius r. | | | | | | | | | | | | | 3.22 State general equation of a | Derive the equation of a | | | | | | circle. | circle with center | | | | | | | outside the origin. | | | | | | 3.23 Determine the coordinates | | | | | | | of the center of a circle | State general equation of | | () | | | | from a given equation of a | a circle. | | | | | | circle. | | | | | | | | Determine the | | • | | | | | coordinates of the center | | | | | | 3.24 Draw orthogonal circles | of a circle from a given | | | | | | 3.2 i Braw ermegenar eneres | equation of a circle. | | | | | | 3.25 Find the equations of the | equation of a energy | | | | | | tangent and the normal at | Draw orthogonal circles | | | | | | a point circle | Draw orthogonal efficies | | | | | | a point energ | Find the equations of the | | | | | | 3.26 List illustrative examples | tangent and the normal | | | | | | of each of 3.20 to 3.25 | | | | | | | | at a point circle | | | | | | above | | | | | | | | List illustrative examples | | | | | |
 of each of 3.20 to 3.25 | | | | | | | above | 11 1 1 | | | | Gener | al Objective 4.0: Understand the c | | and hyperbola. | | | | 10-12 | 4.1 Define the Parabola | Define the Parabola | | | Derive the | | 10-12 | NO. | | | | standard | | | | • | | • | | | equation of | |--------------| | a Danalas 1- | | a Parabola | | $y^2 = 4ax$ | 4.9 State the properties of the | | |----------------------------------|----------------------------------| | Ellipse. | State the properties of the | | | Ellipse. | | 1.10 Determine the equation of | | | the tangent and the normal | Determine the equation of | | to an ellipse from a given | the tangent and the normal | | point. | to an ellipse from a given | | | point. | | 4.11 Define focal chord and axis | | | of ellipse. | Define focal chord and | | _ | axis of ellipse. | | 4.12 Solve problems on ellipses | | | e.g. Find the length of the | Solve problems on ellipses | | axis and the eccentricity | e.g. Find the length of the | | for the ellipse: $4x^2 + 9y^2 =$ | axis and the eccentricity | | 36 | for the ellipse: $4x^2 + 9y^2 =$ | | | 36 | | 4.13 Define the Hyperbola. | | | | Define the Hyperbola. | | 4.14 Derive the equation of the | | | Hyperbola. | Derive the equation of the | | | Hyperbola. | | 4.15 Identify the properties of | | | the Hyperbola. | Identify the properties of | | | the Hyperbola. | | 4.16 Define asymptoes, chord, | | | tangent and normal to a | Define asymptoes, | | hyperbola | chord, tangent and normal | | | to a hyperbola. | | | |---------------------------------|---------------------------------|--------------|--| | 4.17 Solve problems on | | , (<u> </u> | | | hyperbola e.g. Find the foci | _ | | | | and directrixes for | hyperbola e.g. Find the | | | | hyperbola: $x^2/16 - y^2/9 = 1$ | foci and directrixes for | U | | | | hyperbola: $x^2/16 - y^2/9 = 1$ | | | | 4.18 Explain rectangular | | | | | hyperbola. | Explain rectangular | | | | | hyperbola. | | | | 4.19 Determine tangent and | | | | | normal to the rectangular | Determine tangent and | | | | Hyperbola. | normal to the rectangular | | | | | Hyperbola. | | | | LUATION; EXAMINATION: 60 | % C.A: 40% | | | | EUATION, EXAMINATION. 00 | % C.A: 40% | | | ## **Electrical Power III** | PROGRAMME | : NATIONAL DIPLOMA IN ELI | ECTRICAL AND ELECTRONICS ENGIN | EERING TECHNOLOGY | |-------------|---------------------------|--------------------------------|-------------------| | COURSE TITL | E: Electrical Power III | COURSE CODE: EEC 221 | CONTACT HOURS: 3 | | | | CREDIT UNIT: 2 | THEORY: 1 | | YEAR: II | SEMESTER: II | PRE-REQUISITE: EEC 211 | PRACTICAL: 2 | GOAL: This course is designed to acquaint the students with the knowledge and skills of the principles of power systems GENERAL OBJECTIVES: On completion of this course, the student should be able to: - 1.0 Understand the performance of load flow in an interconnected power system. - 2.0 Understand the fault analysis in interconnected power systems. - 3.0 Understand the principles of protection systems. | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | | |--|---|------------------------|----------------------|----------------|------------------|---------------|---------------------|--------------| | COURSE TITLE: Electrical Power III | | | COURSE CODE: EEC 221 | | CONTACT HOURS: 3 | | | | | | | | CREDIT U | JNIT: 2 | | THEORET | TCAL: 1 | | | YEAR | : II SEMESTER: | II | PRE-REQ | UISITE: EE | C 211 | PRACTICA | AL : 2 | | | COUR | COURSE SPECIFICATION: THEORETICAL AND PRACTICAL | | | | | | | | | GOAL | : This course is designed to acqu | aint the students with | the knowled | dge and skills | of the pr | nciples of po | ower systems | | | Genera | al Objective 1.0: Understand the | performance of load | flow in an in | nterconnected | power sy | stem. | | | | | THEORETICAL CO | ONTENT: | | | PRAC' | TICAL CON | TENT: | | | Week | Specific Learning Outcome | Teachers' Activitie | S | Resources | Specifi | c Learning | Teachers' | Resources | | | | | | .(\) | Outcor | ne | Activities | | | | 1.1 Explain interconnected | Explain interconnec | ted power | Textbook | | | Guide students to: | Transmission | | 1-5 | power systems. | systems. | | Journals | Determ | | Determine the | line trainer | | | | | | Whiteboard | sending | | sending and | | | | 1.2 State the advantages and | Explain the advanta | ges and | Marker | receivin | • | receiving end | Ammeter | | | disadvantages of | disadvantages of | | Charts | voltage | | voltage of the | | | | interconnected power | interconnected power | er | Animations | transmi | ssion line. | transmission line. | Voltmeter | | | Systems. | Systems. | • | Computer | | | | | | | | .07 | | Projector | | | Determine the | Wattmeter | | | 1.3 Explain the power circle | Explain the power c | ircle | | Determin | ne the | voltage regulation | | | | diagram. | diagram. | | | _ | egulation | and transmission | Computers | | | • | | | | | smission | efficiency. | with | | | 1.4 Describe the techniques for | · | | | efficienc | y. | | appropriate | | | reducing interconnected | reducing interconne | - | | | | Conduct a load flow | software. | | | power systems to simple | systems to simple ed | quivalent | | | | study of two bus | | | | equivalent diagrams. | diagrams. | | | Conduct | a load flow | power network | | | | AU' | | | | study of | two bus | using appropriate | | | 1.5 Explain the need for a | Explain the need for a power | power network using software | | |---------------------------------|---------------------------------|--------------------------------------|--| | power flow study. | flow study. | appropriate software | | | | | Run a programme | | | 1.6 State the benefits of power | Explain the benefits of power | Run a programme for a load flow | | | flow study. | flow study. | for a load flow analysis of a two- | | | | | analysis of a two-bus bus power | | | 1.7 Explain the nodal | Explain the nodal admittance | power network. network. | | | admittance matrices for a | matrices for a two-bus | | | | two-bus network. | network. | Construct the | | | | | Construct the power power circle | | | 1.8 State the variables | Explain the variables affecting | círcle diagram. diagram. | | | affecting the load flow in | the load flow in power system | | | | power system network. | network. | Formulate the nodal | | | | | admittance matrices nodal admittance | | | 1.9 State which variables are | Explain which variables are | for a two-bus | | | control dependent and | control dependent and | bus network. | | | independent. | independent. | network. | | | | | Calculate the load | | | 1.10 State the general form of | Explain the general form of | Calculate the load flow in an | | | the load flow equation in: | the load flow equation in: | flow in an interconnected | | | Rectangular form | Rectangular form | interconnected system | | | Polar form | Polar form | system | | | | | | | | 1.11 Explain the Gauss-Seidel | Explain the Gauss-Seidel | Classify the | | | method of load flow | method of load flow solution. | variables in 1.9 | | | solution | | Classify the into control | | | | | variables in 1.9 into dependent and | | | AO. | | control dependent | | | | 1.12 Solve problems on load | Explain how to solve | | and independent | independent | | |-------|------------------------------------|------------------------------------|---------------|---------------------|---------------------|-----------| | | flow analysis for | problems on load flow | | 1 | | | | | interconnected systems. | analysis for interconnected | | | | | | | | systems. | | | | | | | | | | | | | | | 1.13 Explain the application of | Explain the application of | | | | | | | computers to conduct load | computers to conduct load | | | | | | | flow study. | flow study. | | | | | | | | | .4 | | | | | | 1.14 Explain a computer | Explain a computer | | | | | | | programme for a load | programme for a load flow | | | | | | | flow analysis of a two-bus | analysis of a two-bus power | | | | | | | power network. | network | | | | | | | | | | | | | | | 1.15 Explain Circuit | Explain Circuit parameters: P, | | | | | | | parameters: P, Q, S, V | Q, S, V and \wp variables | | | | | | | and & variables affecting | affecting the load flow in the | | | | | | | the load flow in the power | power system network. | | | | | | | system network. | \(\) | | | | | | Gener | al Objective 2.0: Understand the | fault analysis in interconnected p | ower systems. | | | | | | 2.1 State types of faults that can | Explain types of faults that can | Textbook | | Guide students to: | Wattmeter | | 6-9 | occur on generators, | occur on generators, | Journal | Identify the faults | Identify the faults | | | | transformers and | transformers and transmission | Whiteboard | on generators, | on generators, | Voltmeter | | | transmission lines. | lines. | Marker | transformers and T- | transformers and | | | | | | Charts | line. | T-line. | Ammeter | | | 2.2 Explain short-circuit, open | Explain short-circuit, open | Animations | | | | | | circuit and earth faults on | circuit and earth faults on | Computer | | Insert an open | Phase | | | transmission lines. | transmission lines. | Projector | Insert an open | circuit and earth | sequence | | | | | circuit and earth | faults on | meter | |----------------------------------|---------------------------------|--------|---------------------|--------------------|--------------| | 2.3 State the transient and sub- | Explain the transient and sub- | | faults on | transmission lines | | | transient reactances. | transient reactances. | | transmission lines | using appropriate | Oscilloscope | | | | | using appropriate | software | | | 2.4 Explain the
sub-transient | Explain the sub-transient and | | software | | Computers | | and transient reactances | transient reactances using the | | | Determine the | with | | using the appropriate | appropriate waveform of a | | | fault levels on | appropriate | | waveform of a faulted | faulted generator. | | | typical power | software | | generator. | | | Determine the fault | systems. | | | | | | levels on typical | | | | 2.5Explain typical waveforms | Explain typical waveforms of | | power systems. | | | | of short circuit currents in | short circuit currents in power | .('\') | | Determine the | | | power systems. | systems. | | | MVA fault level | | | | | | Determine the | on typical power | | | 2.6 State a symmetrical fault. | Explain a symmetrical fault. | | MVA fault level on | systems. | | | | | | typical power | | | | 2.7 Solve symmetrical fault | Explain how to solve | | systems. | Draw typical | | | problems using the one-line | symmetrical fault problems | | | waveforms of | | | diagram and the per-unit | using the one-line diagram and | | | short circuit | | | system method. | the per-unit system method. | | Draw typical | currents in power | | | | | | waveforms of short | systems. | | | 2.8 Derive expressions for the | Derive expressions for the | | circuit currents in | | | | symmetrical components | symmetrical components for | | power systems. | | | | for positive, negative and | positive, negative and zero | | | | | | zero sequences in terms of | sequences in terms of the | | | | | | the transmission line | transmission line parameters. | | | | | | parameters. | | | | | | | L AU' | | | | | | | power in the symmetrical | Explain the expression for power in the symmetrical component. | | | CAI | | |--|--|------|--------|-----|--| | 2.10 Define unsymmetrical (asymmetrical) faults for a. Single-line to ground Double-line to ground | Explain unsymmetrical (asymmetrical) faults for • Single-line to ground • Double-line to ground • Line-to-Line. | | CULEDI | | | | Line-to-Line 2.11 Solve unsymmetrical fault problems using the symmetrical component of networks. | Explain how to solve unsymmetrical fault problems using the symmetrical component of networks. | FCHI | | | | | impedance of a power | Explain the sequence impedance of a power system using symmetrical components. | | | | | | 2.13 Explain the sequence network for a given power system. | Explain the sequence network for a given power system. | | | | | | 2.14 Calculate the MVA fault level on typical power systems. | Calculate the MVA fault level on typical power systems. | | | | | | | | | 1 | 1 | | 1 | |--------|---|--|------------|-----------------------------|-------------------------|--------------| | | 2.15 Describe methods of selecting circuit breakers, switch gears bus bars, fuses for typical fault levels. | Explain methods of selecting circuit breakers, switch gears bus bars, fuses for typical fault levels | | | | | | Genera | al Objective 3.0: Understand the | principles of protection systems | | -11/ | | | | 10-15 | 3.1 Explain the corona effect | Explain the corona effect | Textbook | | Guide students to: | Transmission | | | | | Journal | Plot graphs for | Plot graphs for | line | | | 3.2 Explain the factors | Explain the factors affecting | Whiteboard | voltage and current | voltage and | demonstrator | | | affecting corona effect | corona effect | Marker | surges when R is | current surges | | | | | | Charts | less than Z_o (R< Z_o) | when R is less | Ammeter | | | 3.3 Explain the causes of | Explain the causes of | Animations | | than Z_o (R < Z_o) | | | | overvoltage in power | overvoltage in power systems. | Computer | | | Voltmeter | | | systems. | _0_ | Projector | Test Insulators to | Test Insulators to | | | | 3.4 Explain surge waveform. | Explain surge waveform. | | determine their | determine their | Wattmeter | | | | | | voltage distribution | voltage | Insulators | | | 3.5 State the possible effects of | Explain the possible effects of a | | and string | distribution and | | | | a travelling wave on the | travelling wave on the | | efficiency. | string efficiency. | Insulation | | | transmission line. | transmission line. | | | | tester | | | | | | | | | | | 3.6 Solve problems involving | Explain how to solve problems | | | Draw a typical | Relay | | | surge voltage in the | involving surge voltage in the | | Draw a typical | surge waveform. | _ | | | following: | following: | | surge waveform. | X1 .:0 1: 1 . : | Data | | | Single phase line | Single phase line | | X1 | Identify lightning | D1 | | | Three phase line | • Three phase line | | Identify lightning | arrester | Plotting | | | Single-phase | Single-phase | | arrester | | materials. | | | | T | | | ı | |---|---|-----|-----------------|-----------------|---| | concentric cable. | concentric cable. | | | Classify relays | | | | | | Classify relays | | | | 3.7 Explain an expression for | Explain an expression for | | | \mathcal{O}' | | | reflected surge voltage and | reflected surge voltage and | | | | | | current. | current. | | | | | | | | | | | | | 3.8 Define: | Explain: | | | | | | Reflecting factor | Reflecting factor | | | | | | coefficient (p) | coefficient (p) | | | | | | Transmission factor | Transmission factor | | | | | | coefficient (t) | coefficient (t) | | | | | | | | CKI | | | | | 3.9 Explain the protection | Explain the protection scheme | | | | | | scheme of transmission lines | of transmission lines against | | | | | | against possible lightning | possible lightning surges | | | | | | surges. | | | | | | | | /() | | | | | | 3.10 Explain the effect of a | Explain the effect of a surge | | | | | | surge on an overhead line | on an overhead line | | | | | | terminating to a | terminating to a transformer. | | | | | | transformer. | | | | | | | 3.11 Explain methods of | Explain methods of testing | | | | | | testing insulators. | insulators. | | | | | | • | | | | | | | 3.12Describe insulation co | Explain insulation co- | | | | | | ordination in overhead | ordination in overhead lines. | | | | | | lines. | | | | | | | | | | | | | | 3.13 Explain the principles of | Explain the principles of | | |---|--|--| | operation of an impulse | operation of an impulse | | | generator | generator | | | 3.14 Explain relays | Explain relays | | | 3.15 Explain the operation principles of relays | Explain the operation principles of relays | | | 3.16 Explain the classification | Explain the classification of | | | of relay | relay | | **ASSESSMENT:** The practical class will be awarded 60% of the total score. The continuous assessments, tests and quizzes will take 10% of the total score, while the remaining 30% will be for the end-of-the-semester examination score. ## Computer Hardware and Software II | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | |--|-------------------------------------|----------------------|------------------|--|--| | COURSE TITLE | : Computer Hardware and Software II | COURSE CODE: EEC 222 | CONTACT HOURS: 3 | | | | | | CREDIT UNIT: 2 | THEORETICAL: 1 | | | | YEAR: II | SEMESTER: II | PRE-REQUISITE: | PRACTICAL: 2 | | | | GOAL: This course is designed to equip students with knowledge and skills on how to diagnose and rectify simple faults on a computer and | | | | | | GOAL: This course is designed to equip students with knowledge and skills on how to diagnose and rectify simple faults on a computer and application software for electrical and electronics engineering design GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Understand how to diagnose simple faults on a computer - 2.0 Understand how to carry out repairs on Computer - 3.0 Understand the concept and principle of application software for electrical and electronic engineering design - 4.0 Understand basic structure and function of python software - 5.0 Understand MATLAB software | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | | |--|---|--------------------------------------|------------------------|--|--|-----------|--|--| | COURSE TITLE: Computer Hardware and Software II | | COURSE (| CODE: EEC 222 | CONTACT HOURS: 3 | | | | | | | | | | CREDIT UNIT: 2 THEORETICAL: 1 | | | | | | YEAR: | | | PRE-REQ | UISITE: P | RACTICAL: 2 | | | | | | SE SPECIFICATION: TH | | | | | | | | | | | | | ls on how to diagnose and rect | rify simple faults on a com | puter and | | | | | ion software for electrical ar | | | | | | | | | General | Objective 1.0: Understand | Computer Hardware Re | epairs | | | | | | | THEOR | RETICAL CONTENT | | | PRACTICAL CONTENT | • | | | | | Week |
Specific Learning Outcome | Teacher's Activities | Resources | Specific Learning Outcome | Teacher's Activities | Resources | | | | | 1.1 Explain the concept of | Explain the | Markerboard | Demonstrate how to carry | Guide students to: | Desktop | | | | | system repairs | procedures involved | Marker | out computer maintenance | Demonstrate how to | computer | | | | | 1.2 Describe the procedures involved for Computer | for electronics/
computer repairs | Textbooks
Computer | Repair common power supply issues. | carry out computer maintenance | Laptops | | | | | Repairs | | Pro je ctor | supply issues. | Repair common power | Toolbox | | | | | 1.3 Explain how to repair | | | Upgrade laptop | supply issues. | | | | | | common power supply | \circ | | components (RAM, SSDs, | | | | | | | issues. | ONE | | Wi-Fi cards). | Upgrade laptop components (RAM, | | | | | | 1.4 Explain how to upgrade laptop | BORRIV | | Disassemble and repair a faulty motherboard. | SSDs, Wi-Fi cards). | | | | | | components (RAM, | | | | Disassemble and repair | | | | | | SSDs, Wi-Fi cards). | | | Upgrade components in a | a faulty motherboard. | | | | | | 1.5 Explain how to | | | laptop or desktop to improve performance. | Upgrade components in a laptop or desktop to | | | | | | disassemble and repair | | | | a raptop of desirtop to | | | | | 1 | 1 | 1 | 1 | 1 | | , , | |--------|--|---|---|--|--|---| | | a faulty motherboard. 1.6 Explain how to upgrade components in a laptop or desktop to improve performance. | | | | improve performance. | | | Genera | al Objectives 2.0: Understand | Computer Fault Diagnosis | 8 | | | | | 1-4 | 2.1 Explain computer software components2.2 Explain computer hardware components. | Explain the basic concept of PC Troubleshooting Explain Hardware Problems | Markerboard Marker Textbooks Computer Projector | Identify computer hardware components Identify AT and ATX f power packs | Guide students to: Identify computer hardware components Identify AT and ATX f power packs | Computer auxiliary units Computer peripheral units | | | 2.3 Explain the basic concept of PC Troubleshooting | Explain Operating System & Software Issues | R | Identify different computer interface cables Assemble a Computer System. | Identify different computer interface cables Assemble a Computer | Central processing units (CPU) I/O devices, | | | 2.4 Explain Hardware
Problems | Explain Networking & Internet Connectivity Troubleshooting | | Disassemble a Computer System. | System. Disassemble a Computer System. | tools and measuring instruments. | | | 2.5 Explain Operating System & Software Issues | Explain Virus & Malware Removal Preventative | | Identify faults in the following: • Power supplies • System clocks • Memory Cards | Identify faults in the following: • Power supplies • System clocks | Scraps of computer system. | | | 2.6 Explain Networking & Internet Connectivity Troubleshooting | Maintenance & Optimization Explain Hands-on Troubleshooting | | Low battery I/O ports, Disk drives Voltages Keyboard | Memory Cards Low battery I/O ports, Disk drives Voltages | Memory cards Mother board | | 2.7 Explain Virus & Malware Removal2.8 Explain computer preventative | Techniques Explain faults that relates the following: • Power supplies • System clocks • Memory Cards | Monitors Scratches on discs Rectify the following faults: Overheating Slow performance | • Keyboard • Monitors • Scratches on discs Rectify the following faults: | |---|---|---|--| | Maintenance & Optimization 2.9 Explain Hands-on Troubleshooting Techniques | Low battery I/O ports, Disk drives Voltages Keyboard Monitors | Blue screen of Death Internet connectivity issues Malware Frozen screen Power issues Software crashes Peripheral device | Overheating Slow performance Blue screen of Death Internet connectivity issues Malware | | 2.10 Explain faults that relates the following: Power supplies System clocks Memory Cards Low battery I/O ports, Disk drives Voltages Keyboard Monitors Scratches on discs. 2.11 Explain the troubleshooting procedures for the | Scratches on discs. Explain the troubleshooting procedures for the following computer faults: Overheating Slow performance Blue screen of Death Internet connectivity issues Malware Frozen screen Power issues Software crashes Peripheral | issues Ram (memory) issues Unable to boot Applications won't install CPU problems Data loss issues Dropped internet connections | Frozen screen Power issues Software crashes Peripheral device issues Ram (memory) issues Unable to boot Applications won't install CPU problems Data loss issues Dropped internet connections | | following computer faults: Overheating Slow performance Blue screen of Death Internet connectivity issues Frozen screen Power issues Software crashes Peripheral device issues Nam (memory) issues Unable to boot Applications Ram (memory) issues Unable to boot Applications won't install CPU problems Data loss issues Drate loss issues Dropped internet connections 2.12 Explain the steps to rectify the faults in 1.8 and 1.9. 2.13 Explain harmful software and security threats detection and the steps to rectify the faults in 1.8 and 1.9. 2.13 Explain harmful software and security threats detection and the steps to rectify the faults in 1.8 and 1.9. | |---| | | elimination | | | | | | |--------|-----------------------------|--------------------------|------------------|---------------------------|--------------------------|----------------| | Genera | l Objective 3.0: Understand | basic structure and func | tion of python s | software | | | | 3-11 | 3.1 Define software. | Explain python and | Markerboard | Demonstrate indentation | Guide students to: | Computers | | | | its functions | Marker | and comments in python | Demonstrate indentation | with installed | | | 3.2 List of application | | Textbooks | | and comments in python | python | | | software in electrical | Explain python | Computer | Demonstrate different | | software | | | engineering. | syntax compared to | Projector | types of python data | Demonstrate different | | | | | other programming | | () | types of python data | | | | 3.3 Explain the uses of | languages | | Demonstrate functions | | | | | application software | | | associated with numpy | Demonstrate functions | | | | | Explain the basic | | | associated with numpy | | | | 3.4 Define python and its | syntax, indentation | | Demonstrate the use of | | | | | functions | and comments in | | numpy library | Demonstrate the use of | | | | | python | | | numpy library | | | | 3.5 Explain python | | | Create table and classes | | | | | syntax compared to | Explain the different | | | Create table and classes | | | | other programming | types of python data: | | Manipulate the usual | | | | | languages | • Integer (int) | | functions associated
with | Manipulate functions | | | | | • Float | | numpy in python | associated with numpy | | | | 3.6 Explain the basic | • String | | | in python | | | | syntax, indentation | • Boolen | | Demonstrate the pandas | | | | | and comments in | \(\)' | | library | Demonstrate the | | | | python | Explain python data | | | pandas | | | | | structure and | | Demonstrate how to build | library | | | | 3.7 Explain different | characteristics | | and manipulate a data | | | | | types of python data: | | | frame | Demonstrate how to | | | | • Integer (int) | Explain python | | | build and manipulate a | | | Genera | l Objective 4.0: Understand | MATLAB software | | | | | |--------|---|---|---|--|--|--------------------------------------| | 12-15 | 4.1 Define MATLAB and its function 4.2 Explain how to start MATLAB | Explain MATLAB and its function Explain the startup of MATLAB | Markerboard
Marker
Textbooks
Computer
Projector | Demonstrate the launch of MATLAB Demonstrate MATLAB window as a calculator | Guide students to: Demonstrate the launch of MATLAB Demonstrate MATLAB window as a | Computers
with MATLAB
software | | | 4.3 Describe how to use MATLAB as a calculator4.4 Define the following: | Explain how to use MATLAB as a calculator Explain the following: | | Demonstrate the following in MATLAB windows library | Demonstrate the following in MATLAB windows library | | | | Matrices Arrays Columns of data 4.5 Explain the basic syntax, indentation and comments in MATLAB | Matrices Arrays Columns of data Explain the basic syntax, indentation and comments in MATLAB | OR | Demonstrate the following data in MATLAB window Integer (int) Float String Boolean | Demonstrate the following data in MATLAB window Integer (int) Float String Boolean | | | | 4.6 Explain different types of MATLAB data: Integer (int) Float String Boolean | Explain different types of MATLAB data: Integer (int) Float String | | Simulate an RLC circuit using MATLAB | Simulate an RLC circuit using MATLAB | | | Boolean | 1 | | | |---------|---|--|--| **ASSESSMENT:** The practical class will be awarded 60% of the total score. The continuous assessments, test and quizzes will cover 10% of the total score, while the remaining 30% will be for the end of the semester examination. | PROGRAMME: NATIONAL DIPLOMA IN ELEC | CTRICAL AND ELECTRONICS ENGI | INEERING TECHNOLOGY | |---|---|--| | COURSE TITLE: Electronics III | COURSE CODE: EEC 223 | CONTACT HOURS: 4 | | | CREDIT UNIT: 3 | THEORETICAL: 1 | | YEAR: II SEMESTER: II | PRE-REQUISITE: EEC 213 | PRACTICAL: 2 | | GOAL: This course is designed to equip the student | with the knowledge and skills of passiv | e and active electronic components and their | | applications. | . (| | | GENERAL OBJECTIVES: At the end of the cours | se the student should be able to: | <i>y</i> | | 1.0 Understand the nature of feedback in relation to | amplifier | | | 2.0 Understand controllers and controller design | | | | 3.0 Understand Oscillators and Multivibrators in ele | ectronic circuits | | | 4.0 Know power converters and their applications | | | | | | | | WATE | 264 | | ### **Electronics III** | PROGRAMME: NATIONAL DIPLOMA IN E | ERING | | |---|------------------------|------------------| | COURSE TITLE: Electronics III | COURSE CODE: EEC 223 | CONTACT HOURS: 4 | | | CREDIT UNIT: 3 | THEORETICAL: 1 | | YEAR: II SEMESTER: II | PRE-REQUISITE: EEC 213 | PRACTICAL: 2 | | | | | #### **COURSE SPECIFICATION:** THEORETICAL AND PRACTICAL GOAL: This course is designed to equip the student with the knowledge and skills of passive and active electronic components and their applications. General Objective 1.0: Understand the nature of feedback in relation to amplifier | Genera | General Objective 1.0: Understand the nature of feedback in relation to amplifier | | | | | | | | | | |--------|---|----------------------------|------------|--------------------------|-------------------------|--------------|--|--|--|--| | | THEORETICAL CONTENT | | | | PRACTICAL CONTENT | | | | | | | Week | Specific Learning | Teachers' Activities | Resources | Specific Learning | Teachers' Activities | Resources | | | | | | | Outcome | | | Outcome | | | | | | | | 1-3 | 1.1 Describe Input and | Explain Input and Output | Textbooks | | Guide students to | Oscilloscope | | | | | | | Output of a system in an | of a system in an | Journals | Investigate the effect | Investigate the effect | | | | | | | | amplifier in relation to: | amplifier in relation to: | Whiteboard | of applying negative | of applying negative | Oscillators | | | | | | | Voltage | • Voltage | Marker | feedback on a | feedback on a distorted | | | | | | | | Current | • Current | Charts | distorted signal, input, | signal, input, output | Operational | | | | | | | Gain | • Gain | Animations | output and | and impedances of | amplifiers | | | | | | | | | Computer | impedances of | negative feedback of | | | | | | | | 1.2 Explain the general | Explain the general nature | Projector | negative feedback on | an amplifier | Multi- | | | | | | | nature of positive and | of positive and negative | | an amplifier. | | vibrator | | | | | | | negative feedback in a | feedback in a system. | | | | | | | | | | | system. | 1 0 | | | | Voltmeter | | | | | | | | • | | | | | | | | | | | 1.3 Prove that the GAIN of | Explain how to prove that | | | | Ammeter | | | | | | | a system is mainly | the GAIN of a system is | | | | | | | | | | | determined by the | mainly determined by the | | | | Cables | | | | | | feedback function and feedback function and | | |---|--------------| | independent of forward independent of forward | Power source | | gain. gain. | , | | | Electronic | | 1.4 Describe the general Explain the general | trainer. | | expression for stage gain expression for stage gain | | | of a basic feedback in an of a basic feedback in an | | | amplifier amplifier | | | | | | 1.5 Describe effect of Explain the effect of | | | applying negative applying negative | | | feedback to an amplifier feedback to an amplifier | | | in relation to: | | | • Gain • Gain | | | Gain stability Gain stability | | | Bandwidth Bandwidth | | | Distortion Distortion | | | Noise Noise | | | Input and output Input and output | | | resistance in a resistance in a | | | qualitative method qualitative method | | | | | | 1.6 State the advantages and Explain the advantages | | | disadvantages of and disadvantages of | | | negative feedback to an negative feedback to an | | | amplifier circuit amplifier circuit | | | General Objective 2.0: Understand Controllers and Controller design | | | | 1 | | 1 | T | | 1 | |-----|------------------------------|---------------------------|------------|----------------------|----------------------|-------------| | | 2.1 Define Controller | Explain Controller | Textbooks | | Guide students to: | Breadboard | | 4-8 | | | Journals | Design a controller | Design a controller | Computers | | | 2.2 Explain the types of | Explain the types of | Whiteboard | with simple control | with simple control | with | | | Controllers | Controllers | Marker | system configuration | system configuration | appropriate | | | | | Charts | | | software | | | 2.3 Explain the importance | Explain the importance of | Animations | | | PID | | | of Controllers to electronic | Controllers to electronic | Computer | | | controller. | | | circuits | circuits | Projector | | | | | | | | | () | | | | | 2.4 Explain the properties | Explain the properties of | | | | | | | of a Proportional | a Proportional Integral | | | | | | | Integral and Derivative | and Derivative (PID) | | | | | | | (PID) Controller | Controller | | | | | | | | | | | | | | | 2.5 Explain the | Explain the applications | | | | | | | applications of PID | of PID Controller. | 0_ | | | | | | Controller: | Temperature PID | | | | | | | Temperature PID | Controller | | | | | | | Controller | Tension PID | | | | | | | Tension PID | Controller. | | | | | | | Controller. | Contoner | | | | | | | Controller. | . 1 | Genera
9-10 | al Objective 3.0: Understand | Oscillators and Multivibrator | | | | | |----------------|----------------------------------|-------------------------------|------------------|--|----------------------------------|--------------| | | al Objective 3.0: Understand | Oscillators and Multivibrator | | | | 1 | | 9-10 | | | rs in electronic | circuits | | | | | 3.1 Define Oscillators | Explain Oscillators | Textbooks | | Guide students to: | Oscilloscope | | | | | Journals | Measure the | Measure the frequency | | | ļ. | 3.2 Explain the working | Explain the working | Whiteboard | frequency and | and amplitude of a | Oscillators | | | principles of oscillators | principles of oscillators | Marker |
amplitude of a | sinusoidal signal of an | | | | | | Charts | sinusoidal signal of | LC Colpitts oscillator. | Op-amp | | | 3.3 Explain the functions of | Explain the functions of | Animations | an LC-Colpitts | | | | | Oscillators | Oscillators | Computer | oscillator. | Measure the frequency | Ammeter | | | | | Projector | | and amplitude of an | | | - | 3.4 Explain how oscillators | Explain how oscillators | | Measure the | output generated | Cable | | | can be produced by an | can be produced by an | | frequency and | signal. | | | | amplifier with positive | amplifier with positive | | amplitude of an | | Voltmeter | | | feedback. | feedback. | | output generated | Carryout experiment | 3.6.1.2.21 | | | 2.5.5. 1 : .1 | | ~ | signal. | to investigate the | Multivibrate | | | 3.5 Explain the operation | Evaloia the enematic et | | Comment or manino ant | factors which affect | | | | of: | Explain the operation of: | | Carryout experiment to investigate the | the operation of LC | | | | • C oscillator | • C oscillator | | factors which affect | Hartley oscillator and | | | | • L-C oscillator | • L-C oscillator | | the operation of LC | measure the frequency | | | | (Hartley & Colpitts Oscillators) | (Hartley &
Colpitts | | Hartley oscillator | and amplitude of a | | | | Oscillators) | Oscillators) | | and measure the | generated signal | | | | 3.6 Describe methods of | Ostiliators) | | frequency and | | | | | achieving frequency | Explain methods of | | amplitude of a | Carryout an | | | | stability of oscillators as | | | generated signal | experiment to | | | | in piezo-electric crystal | stability of oscillators as | | | determine the factors | | | | in pieze electric exvadit | in piezo-electric crystal | | Carryout an | which influence the operation of | | | | 3.7 Define with the aid of | | | experiment to | transistorized | | |--------|------------------------------|------------------------------|------------|-----------------------|--------------------------|--------------| | | suitable sketches the | Explain with the aid of | | determine the factors | monostable, bistable | | | | operation of | suitable sketches the | | which influence the | and astable | | | | multivibrators | operation of | | operation of | multivibrator | | | | | multivibrators | | transistorized | | | | | 3.8 Explain the types of | | | monostable, bistable | | | | | Multivibrators | Explain the applications | | and astable | Perform experiment to | | | | | of multivibrators circuits | | multivibrators. | observe and measure | | | | 3.9 Explain with the aid of | | | | both the input and | | | | suitable sketches the | Explain with the aid of | | Carryout an | output waveforms of a | | | | operation of | suitable sketches the | | experiment to | bridge rectifier and the | | | | multivibrators | operation of | | determine both the | effects of different | | | | | multivibrators | | input and output | filter circuits | | | | 3.10 State the applications | | | waveforms of a bridge | 2 | | | | of multivibrators | | | rectifier and the | Build a circuit | | | | circuits. | Explain the applications | | effects of different | consisting of 555 | | | | | of multivibrators circuits | | filter circuits | multivibrator to | | | | 3.11 Explain how to solve | | | | determine 50% duty | | | | simple problems on | Explain how to solve | | Build a circuit | cycle square wave | | | | multivibrators. | simple problems on | | consisting of 555 | output signal | | | | | multivibrators. | | multivibrator to | | | | | | | | determine 50% duty | | | | | | | | cycle square wave | | | | | | V | | output signal | | | | Genera | al Objective 4.0: Know power | converters and their applica | tions | | | | | 11-15 | 4.1 Define power | Explain power converters | Textbooks | | Guide students to: | Sample | | | converters | | Journals | Sketch a block | Sketch a block diagram | converter | | | | Explain the types of | Whiteboard | diagram | representation of a | Oscilloscope | | | | | | | | | | 4.2 Explain the types of | power converters and | Marker | representation of a | converter with its | | |------------------------------|-----------------------------|------------|-----------------------|-------------------------|---------------| | power converters and | inverters | Charts | converter with its | components | Multimeter | | inverters | | Animations | components | . 10" | | | | | Computer | | Measure the input and | Power source. | | 4.3 Explain the working | Explain the working | Projector | Measure the input | output current and | | | principles of power | principles of power | | and output current | voltage levels of a | | | converters | converters | | and voltage levels of | converter and determine | | | | | | a converter and | the frequency | | | 4.4 Explain frequency | Explain frequency | | determine the | waveforms | | | converter as a special | converter as a special type | | frequency | | | | type of power converter | of power converter | | waveforms | | | | | | | | | | | 4.5 Explain the applications | Explain the applications | |) * | | | | of power converters | of power converters | | | | | **ASSESSMENT:** Assessment: The practical class will be awarded 60% of the total score. The continuous assessments, tests and quizzes will be 10% the total score, while the remaining 30% will be for the end of semester examination ## Electric Circuit Theory II | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | |--|--------------------------------|------------------------|------------------|--|--|--|--| | COURSE TIT | LE: Electric Circuit Theory II | COURSE CODE: EEC 224 | CONTACT HOURS: 3 | | | | | | | | CREDIT UNIT: 2 | THEORETICAL: 1 | | | | | | YEAR: II | SEMESTER: II | PRE-REQUISITE: EEC 214 | PRACTICAL: 2 | | | | | GOAL. This course is designed to equip the students with the knowledge and skills of Electrical circuit theorems and network analysis of multiphase systems GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0 Understand the principle of power calculation in a.c circuits. - 2.0 Understand the basic principles of three-phase systems. - 3.0 Know time domain analysis of RC and RL circuits. - 4.0 Understand the concept of magnetic coupling. | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY | | | | | | | | |--|---------------------------|------------------------|----------------------|--|--|------------------|--| | COURSE TITLE: Electric Circuit Theory II | | COURSE CODE: EEC 224 | COURSE CODE: EEC 224 | | | CONTACT HOURS: 3 | | | | | CREDIT UNIT: 2 | | | | THEORETICAL: 1 | | | YEAR: II | SEMESTER: II | PRE-REQUISITE: EEC 214 | | | | PRACTICAL: 2 | | | COLIDGE CDE | CIPICATION THEODETICAL AN | ID DD 4 CEICAI | | | | | | **COURSE SPECIFICATION:** THEORETICAL AND PRACTICAL GOAL: This course is designed to equip the students with thew knowledge and skills of Electrical circuit theorems and network analysis of multiphase systems General Objective 1.0: Understand the principle of power calculation in a.c circuits | | THEORETIC | CAL CONTENT | | PRACTICAL CONTENT | | | | |------|------------------------------|------------------------------------|-------------|---------------------------|-----------------------|--------------|--| | Week | Specific Learning Outcome | Teachers' Activities | Resources | Specific Learning | Teachers' Activities | Resources | | | | | | | Outcome | | | | | 1-3 | 1.1 Explain how to calculate | Solve problems | Textbooks | | Guide students to: | Transformer | | | | power in a.c. circuits | involving power in A.C. | Journals | Demonstrate the effect of | Demonstrate the | | | | | containing: | circuits containing active | Markers | the step-down | effect of the step- | Insulation - | | | | Resistance | and reactive elements | Whiteboard | transformer. | down transformer. | resistance | | | | Inductance | and the combination of | Charts | | | tester | | | | Capacitance | both. | Animations | | Carryout Continuity | | | | | Combinations of (a.)- | | Calculators | Carryout Continuity Test | Test on a Single | Multimeter | | | | (c) | | Projectors, | on a Single Phase | Phase Transformer. | | | | | • | | | Transformer. | | Power source | | | | 1.2 Explain the following | Explain the following | | | Carryout experiment | | | | | terms: | terms: | | Carryout experiment on | on the turns ratio of | | | | | Apparent power | Apparent power | | the turns ratio of a | a transformer | | | | | Reactive power | • Reactive power | | transformer | | | | | | | | | | | , | |---------|---|---|---------------------------------------|--|--|---------------------------------------| | | Power factor and factors affecting its values Apparent power, active and reactive power Methods of power factor correction Explain methods of power factor correction. Explain how to solve problems on
power factor, active power, apparent power, reactive power and power factor correction. | Active power. Power factor and factors affecting its values Apparent power, active Methods of power factor correction Explain methods of power factor correction Explain how to solve as many numerical problems as possible on power factor, active, power, apparent power, reactive power and power factor correction. | | | | | | General | Objective 2.0: Understand the b | | _ | T | | | | 4-7 | 2.1 Define polyphase system2.2 Explain the basic principles of polyphase | Explain polyphase Explain the basic principles of polyphase | Textbooks Journals Markers Whiteboard | Measurement of voltage and current. | Guide students to: Measurement of voltage and current. | Transformer Multimeter Insulation – | | | power systems. 2.2 Explain difference | power systems. Discuss the three-phase | Charts Animations Calculators | Carryout continuity test in three phase transformer. | Carryout continuity test in three phase transformer. | resistance
tester
Power source | | | between single phase, two | system versus single- | Projectors | | | | | | T . | | | 1 | |--------------------------------|-----------------------------|--------------------------|----------------------|---| | phase and three-phase | phase system. | Demonstrate terminals of | Demonstrate | | | systems | | three phase transformer. | terminals of three | | | | Explain the phase | | phase transformer. | | | 2.3 Define the phase sequence | sequence of a three | | | | | of a three phase system. | phase system. | Demonstrate Three phase | Demonstrate Three | | | | | star connected circuits. | phase star connected | | | | Explain the advantages | | circuits | | | 2.4 Explain the advantages of | of 3-phase circuits. | | | | | 3-phase circuits. | Explain how 3-phase | | | | | 2.5 Explain how 3-phase | emf's are produced | | | | | emf's are produced | 1 | | | | | 1 | Explain the differences | | | | | 2.6 Differentiate between star | between star and delta | | | | | and delta 3phase system | 3phase system with their | | | | | with their corresponding | corresponding merits and | | | | | merits and demerit. | demerit. | | | | | | | | | | | | Explain the relationship | | | | | 2.7. Derive the relationship | between line and phase | | | | | between line and phase | values of voltages and | | | | | values of voltages and | current in a star and delta | | | | | current in a star & delta | connected windings. | | | | | connected windings. | connected windings. | | | | | | Analyse an expression for | | | | | | power in a 3phase circuit | | | | | 2.8 Derive an expression for | (balanced and | | | | | power in a 3phase circuit | ` | | | | | (balanced and | unbalanced). | | | | | | | | | | | <u> </u> | 1 | T | ı | T | | , , , , , , , , , , , , , , , , , , , | |----------|---------------------------------------|----------------------------|--------------|---------------------------|---------------------|---| | | unbalanced). | Discuss the 2-wattmeter | | | | | | | | and single wattmeter | | | | | | | 2.9 Explain the 2-wattmeter | methods of measuring 3- | | | O ' | | | | and single wattmeter | phase power. | | | | | | | methods of measuring 3- | | | | | | | | phase power. | Explain how to solve as | | | | | | | | many problems as | | | | | | | 2.10 Explain how to solve as | possible on 2.5 to 2.9 | | | | | | | many problems as possible on | above. | | | | | | | 2.5 to 2.9 above. | | | | | | | | | Explain smart grid | | | | | | | 2.11 Explain smart grid | concepts related to three- | CX | | | | | | concepts related to three- | phase power systems. | | | | | | | phase power systems. | | | | | | | | | | | | | | | | 2.12 Explain the Impact of | Explain the Impact of | | | | | | | unbalanced loads in a | unbalanced loads in a | | | | | | | three-phase system | three-phase system | | | | | | Genera | l Objective 3.0: Know time don | nain analysis of RC and RL | circuits | | | | | | 3.1 Explain transients | Explain transients | Textbooks | | Guide the students | Electronic | | 8-11 | | | Journals | Demonstrate three phase | to: | trainer | | | 3.2 Explain the growth and | Explain the growth and | Markers | delta connected circuits. | Demonstrate three | Energy meter | | | decay curves in RC | decay curves in RC | Whiteboard | | phase delta | | | | circuits. | circuits. | Charts | | connected circuits | Multimeter | | | . 6 | | Animations | Sketch the growth and | | Motor | | | 3.3 Explain how to derive | Explain how to derive | Calculators, | decay curves in RC | Sketch the growth | starters | | | formulae for current & | formulae for current & | Projectors, | circuits. | and decay curves in | Electric | | | | t | 1 | l | l . | | | voltage growth and decay in | voltage growth and | | | RC circuits. | motor | |-------------------------------|----------------------------|----|--------------------------|-----------------------|---------| | | | | C1-4-1, | rections. | IIIOtoi | | RC circuits. | decay in RC circuits. | | Sketch curves for growth | G1 V 1 C | | | | | | and decay of current and | | | | 3.4 Define time constant | Explain time constant | | voltage in RL circuits. | growth and decay of | | | | | | | current and voltage | | | 3.5 Explain time constant in | Explain time constant in | | | in RL circuits. | | | RC circuits. | RC circuits. | | Demonstrate three phase | | | | | | | power measurement | Demonstrate three | | | 3.6 Explain how to derive | Explain how to derive | | using two wattmeter | phase power | | | expressions for the growth | expressions for the | | method. | measurement using | | | and decay of voltage and | growth and decay of | | | two wattmeter | | | current in RL circuits. | voltage and current in | CX | | method. | | | | RL circuits. | | | | | | | | | Demonstrate starting | Demonstrate starting | | | 3.7 Explain curves for growth | Explain curves for | | method of three-phase | method of three- | | | and decay of current and | growth and decay of | 2 | induction motors, Direct | phase induction | | | voltage in RL circuits. | current and voltage in | | on-line starting method. | motors, Direct on- | | | | RL circuits. | | C | line starting method. | | | 3.8 Explain the need for | | | Measure the electrical | Measure the | | | connecting a resistor in | Explain the need for | | quantities of 3-phase | electrical quantities | | | parallel with an inductor. | connecting a resistor in | | induction motor. | of 3-phase induction | | | r nomes were see each water | parallel with an inductor. | | | motor | | | 3.9 Explain how to solve | | | | | | | problems involving transient | Explain how to solve | | | | | | in RC and RL. | problems involving | | | | | | in ite und ite. | transient in RC and RL. | | | | | | | dansient in ice and ice. | T | T = | ī | | | T 1 | |---------|--------------------------------|------------------------------|---------------|---------------------------|---------------------|------------| | | 3.10 Explain damping and | Explain damping and | | | | | | | oscillatory responses of RLC | oscillatory responses of | | | | | | | circuits for real-world signal | RLC circuits for real- | | | O ' | | | | processing applications. | world signal processing | | | | | | | | applications. | | | | | | General | Objective 4.0: Understand the | concept of magnetic coupling | ng phenomena. | | | | | | 4.1 Define magnetic coupling | Explain magnetic | Textbooks | | Guide the students | Induction | | 12–15 | | coupling. | Journals | Determine three -phase | to: | motor | | | 4.2 Define mutual | | Markers | Induction motor under | Determine three - | Multimeter | | | Inductance | Explain mutual | Whiteboard | load. | phase Induction | Multimeter | | | | Inductance. | Charts | | motor under load. | Electronic | | | 4.3 Explain the polarity of | | Animations | Determine Torque – | | trainer | | | coupled coils. | Explain the polarity of | Calculators | Current Characteristic | Determine Torque – | | | | 1 | coupled coils | Projectors | | Current | | | | 4.4 Explain coefficient of | | | Connect the 3-phase dual | Characteristic | | | | coupling | Explain coefficient of | _ | speed squirrel cage | | | | | | coupling. | | induction motor'. | Connect the 3-phase | | | | 4.5 Explain equivalent circuit | | | | dual speed squirrel | | | | for magnetically coupled | Explain an equivalent | | | cage induction | | | | coils. | circuit for magnetically | | Carryout experiment on | motor'. | | | | | coupled coils. | | Induction motor | | | | | 4.6 Define an ideal | | | Determine the polarity of | Carryout experiment | | | | transformer | Explain the concept of | | coupled coils. | on Induction motor | | | | | an ideal transformer. | | • | Determine the | | | | | | | Find equivalent circuits | polarity of coupled | | | | 4.7 Use 4.5 to derive an | Use equivalent circuit | | for magnetically coupled | coils. | | | | equivalent circuit of an | for magnetically coupled | | coils. | | | | | ideal transformer. | coils to derive an | | | | | | | equivalent circuit of an | Find equivalent | |-----------------------------|--------------------------|-----------------| | | ideal transformer | circuit for | | | | magnetically | | 4.8 Explain with the aid of | Explain with the aid of | coupled coils. | | sketches, an equivalent | sketches, an equivalent | | | circuit of a practical | circuit of a practical | | | transformer. | transformer. | | | | | | | 4.9 Explain magnetic | Explain magnetic | | | coupling in resonant | coupling in resonant | | | circuits for wireless | circuits for wireless | | | communication. | communication. | | | | | | | | Explain transformer | | | 4.10 Explain transformer | equivalent circuit | | | equivalent circuit analysis | analysis in high-
| | | in high-efficiency power | efficiency power | | | systems. | systems. | | **EVALUATION:** The continuous assessment; tests and quizzes will be awarded 60% of the total score. The end of the Semester Examination will make up for the remaining 40% of the total score. # **Introduction to Industrial Automation** | PROGRAMME: NATIONAL DIPLOMA IN ELECTRICA | L AND ELECTRONICS ENGINEERING TECHNOLOGY | |---|--| | COURSE TITLE: Introduction to Industrial Automation | COURSE CODE: EEC 225 CONTACT HOURS: 4 | | | CREDIT UNIT: 3 THEORETICAL: 2 | | YEAR: II SEMESTER: II | PRE-REQUISITE: PRACTICAL: 2 | GOAL: This course is designed to acquaint students with the knowledge and skills of industrial automation systems. GENERAL OBJECTIVES: On completion of this course, the students should be able to: - 1.0: Understand Automation Systems - 2.0 Understand Programmable Logic Controller - 3.0 Know PLC Software and Programming Tools - 4.0: Understand PLC fault diagnosis and troubleshooting principles including software tools - 5.0 Understand Robotics System - 6.0 Understand Mechatronics System - 7.0: Know how to use Human-Machine Interfaces (HMI) | PROGRAMME: NATIONAL DIPI | LOMA IN ELECTRICA | L AND ELECT | RONICS ENGINEERING T | ECHNOLOGY | | |--|---|------------------------------------|--|---|----------------------| | COURSE TITLE: Introduction to In | ndustrial Automation | COURSE CO | DE: EEC 225 | ONTACT HOURS: 4 | 1 | | | | CREDIT UNI | T: 3 | HEORETICAL: 2 | 2 | | YEAR: II SEMESTER: II | | PRE-REQUIS | SITE: P | RACTICAL: 2 | 2 | | COURSE SPECIFICATION: TH | EORETICAL AND PRA | ACTICAL | | | | | GOAL: This course is designed to a | equaint students with th | e knowledge and | l skills of industrial automatic | on systems. | | | General Objective 1.0: Understand | Automation System | | , (U) , | | | | THEORETICAL CONTENT | | | PRACTICAL CONTEN | T | | | Week Specific Learning Outcome | Teacher's Activities | Resources | Specific Learning Outcome | Teacher's Activities | Resources | | concept of Automation. 1.2 Enumerate types of Automation. 1.3 Define the following: • Home automation • Industrial automation • Cognitive automation 1.4 Explain the elements of the following: • Home Automation | Explain types of Automation. Explain types of Automation. Explain the following: • Home automation • Industrial automation • Cognitive | Textbooks
Journals
Projector | Identify: • Home Automation • Industrial Automation Identify the elements of the following: • Home Automation Industrial Automation | Guide Student to: Identify: Home Automation Industrial Automation Identify the elements of the following: Home Automation Industrial Automation | Videos and Pictures. | | | Cognitive automation 1.5 Explain structure and Hierarchy of the following: Home Automation Industrial Automation Cognitive automation 1.6 Explain Safety in automation in 2.5. 1.7 List Manufacturing and Process Industry Automation Equipment 1.8 State the Advantage and Disadvantages of Industrial Automation. | Cognitive automation Explain structure and Hierarchy of the following: Home Automation Industrial Automation | | | | | |--------|--|---|------------|-------------------------|--------------------|---------------| | Genera | l Objective 2.0: Understand | Programmable Logic C | Controller | | _ | | | | | | | | | | | 3-4 | 1.1 Explain the history of | Explain the history of | Whiteboard | Identify the parts of a | Guide students to: | PLC Simulator | | | programmable logic | programmable logic | Markers | programmable logic | | | | - | | | | | | | | controllers (PLC) and its | controllers (PLC) and | PLC internal | controller | Identify the parts of | PCs | |-----------------------------|--|---------------|------------------------------------|----------------------------|-----------------| | major manufacturers | its major manufacturers | | Controller | a programmable | | | major manuracturers | its major manufacturers | drawings | Identify the types of | | PLC device with | | 1.2 Explain parts of a | Explain parts of a | Textbooks | Input/output devices | | training board | | programmable logic | programmable logic | Journals | | Identify the types of | | | controller | controller | Projector | Identify expansion | Input/output devices | Manual switche | | | | | modules and boards | | for inputs. | | 1.3 State the PLC hardward | Explain the PLC | | | Identify expansion | Variety of PLCs | | devices. | hardware devices. | | Connect and program | modules and boards | and expansion | | | | | different types of sensors | | modules and | | 1.4 Explain PLC logic | Explain the PLC Logic | | and actuators. | Connect and | boards. | | functions | functions | | | program different | | | 1.55 | | | 1 | 3 1 | PLC simulator | | 1.5 Explain signal Modules | | | signals. | actuators. | | | and Other Peripherals | and Other Peripherals | | | Connect different | | | 1.6 Explain basic concept | | | | analog signals. | | | of signal conditioning. | Explain basic | \mathcal{O} | the PLC: | | | | er ergum communermig. | concept of signal | | On/Off sensors | Connect the | | | 1.7 List different types of | conditioning. | · | Analog sensors | following to the | | | analog signals used in PLC | Explain different | | • Switches | PLC: | | | system: | _ | | • Actuators | • On/Off | | | Voltage signal (05V, | types of analog
signals used in PLC | | • Valves | sensors | | | 010V, -55V) | system: | | • Drives | • Analog | | | Current signal | | | | sensors | | | (020mA, 420mA) | Voltage signal (05V, 010V, - | | Turn on a motor or lamp | • Switches | | | | (03V, 010V, -
55V) | | using two buttons | • Actuators | | | 1.8 Explain the function of | ´ | | applying latching logic | • Valves | | | | Current signal | | | Drives | | | digital input and output | (020mA, 420mA) | | | | |------------------------------|--------------------------|--------------------------|---------------------|--| | modules. | | Turn off a motor or lamp | Turn on a motor or | | | | Explain the function of | using two buttons | lamp using two | | | 1.9 Explain the | digital input and output | applying latching logic | buttons applying | | | integration of different | modules. | | latching logic | | | types of sensors and | | | | | | actuators with PLCs. | Explain the integration | | Turn off a motor or | | | | of different types of | | lamp using two | | | 1.10 Explain the role of | sensors and actuators | | buttons applying | | | analog I/O modules in | with PLCs. | | latching logic | | | PLCs | | | | | | | Explain the role of | | | | | 1.11 Explain SCADA and | analog I/O modules in |) | | | | Data Acquisition systems | PLCs | | | | | | | | | | | | Explain SCADA and | | | | | 1.12 Explain the differences | Data Acquisition | | | | | between SCADA, DCS | systems | | | | | (Distributed Control | | | | | | 1 1 1 1 1 | Explain differences | | | | | 1 12 D 1 1 1 | between SCADA, DCS | | | | | DTII. | (Distributed Control | | | | | (Dometa Torminal | Systems), and PLC-based | | | | | Units), PLCs, sensors, | control systems. | | | | | and actuators. | Describe the hardware | | | | | | components: RTUs | | | | | 1.14Explain the following | (Remote Terminal Units), | | | | | PLC communication | PLCs, sensors, and | | | | | | protocols • Modbus, | actuators. Explain the following | | | CA | | |---------|-------------------------------------|-----------------------------------|----------------|-------------------------|---------------------|----------------| | | 11011045 | PLC communication | | | | | | | • Proffinet | protocols | | | | | | | • Ethernet/IP | • Modbus, | | | | | | | | • Profibus | | | | | | | | • ProfiNet | | | | | | | • | •Ethernet/IP | | A() | | | | General | l Objective 3.0: Know PLC | Software and Programm | ing Tools | di | | | | 5-6 | 3.1 Define a PLC program | Explain the following: | Whiteboard and | Make a program in | Guide students to: | PLC Simulators | | | | Programming | markers, PLC | ladder diagram | | PCs | | | 3.2 Explain the following. | Instructions | Textbooks | | Make a program in | rcs | | | Programming | Programming | Journals | Translate a ladder | ladder diagram | | | | Instructions | software | Projector. | diagram program into | | | | | Programming | | | electrical and logic | Translate a ladder | | | | software | Explain the major | | circuits equivalent. |
diagram program | | | | | features of IEC 61131- | | | into electrical and | | | | 3.3 Explain the major | 3 standard | Ť | Carry out basic Timer | logic circuits | | | | features of IEC 61131- | programming | | operations | equivalent. | | | | 3 standard | languages: | | | | | | | programming | • Ladder logic | | Carry out basic counter | Carry out basic | | | | languages: | Structured text | | operations | Timer operations | | | | • Ladder logic 💉 | Function block | | | | | | | Structured text | diagrams | | Download and Upload | Carry out basic | | | | Function block | | | programs to/from a CPU | counter operations | | | | diagrams | | | using PLC software | | | | | NU | | | | Download and | | | _ | | | | | |---------------------------|-------------------------|-----|-----------|---------------------| | | Explain how a PLC | | | Upload programs | | 3.4 Explain how a PLC | scans a program and | | | to/from a CPU using | | scans a program and | how the scan relates to | | • | PLC software | | how the scan relates to | input and output data | | | | | input and output data | table registers. | | | | | table registers. | Explain the PLC | | | | | | program terminals | | | | | 3.5 Explain the PLC | | | | | | program terminals | Explain the uses of the | | () | | | | 'Main' and 'Init' | | | | | 3.6 Explain the uses of | program files | | | | | 'Main' and 'Init' | | | | | | program files | Explain PLC Ladder | | | | | | diagrams | | | | | 3.7 Explain PLC Ladder | | | | | | diagrams | Explain the Function | _0_ | | | | | Block Diagram | | | | | 3.8 Explain the Function | | | | | | Block Diagram | Explain how to make a | | | | | | program in ladder | | | | | 3.9 Explain how to make a | diagram | | | | | program in ladder | | | | | | diagram | Explain how to | | | | | | translate a ladder | | | | | 3.10 Explain how to | diagram program into | | | | | translate a ladder | electrical and logic | | | | | diagram program into | circuits equivalent. | | | | | electrical and logic | | | | | | | • | | | | | | 1 | | T | <u> </u> | | 1 | |--------|------------------------------------|--------------------------|---------------------|----------------------------|-----------------------|---------------| | | circuits equivalent. | Explain Timers and | | | | | | | | Counter applications | | | CV | | | | 3.11 Explain Timers | | | | | | | | and Counter | | | | | | | | applications | Explain how to | | | | | | | | download and Upload | | | | | | | 3.12 Explain how to | programs to/from a | | | | | | | download and Upload | CPU using PLC | | | | | | | programs to/from a | software. | | | | | | | CPU using PLC | | | | | | | | software | | | | | | | | Software | | | | | | | Conora | l Objective 4.0: Understand | DI C fault diagnosis and | troubleshoeting pri | nciples including software | tools | | | Genera | i Objective 4.0. Onderstand | 1 LC fault diagnosis and | troubleshooting pri | nciples including software | 10018 | | | 0.44 | | — | h | <u> </u> | la | Dr. C. C. 1 | | 9-11 | _ | _ | Whiteboard | Interpret what each status | Guide students to: | PLC Simulator | | | | | | light on a PLC or CPU | | | | | indicators | indicators | PLC Textbooks | | 1 | PCs | | | | Y | Journals | | status light on a PLC | | | | 4.2 Describe the | Explain the advantages | Projector | Interpret PLC error | or CPU module | | | | advantages of using | of using PLC error | | codes. | indicates. | | | | PLC error codes and | codes and how they are | | | | | | | how they are displayed | displayed on a PLC | | Practice resolving | Interpret PLC error | | | | on a PLC | 00 | | common hardware and | codes. | | | | | Explain techniques for | | software issues. | | | | | 4.3 Describe techniques for | | | | Practice resolving | | | | | PLC systems. | | | common hardware | | | | PLC systems. | | | | and software issues. | | | | | Explain diagnostic | | | | | | | 3.13 4.4 Explain | tools and software for | | | | | | | |---|----------------------------------|--------------------------------|----------------|------------------------|----------------------|--------------|--|--| | | diagnostic tools and | troubleshooting. | | | CV | | | | | | software for | | | | | | | | | | troubleshooting. | | | | O | | | | | General Objective 5.0: Understand Robotics System | | | | | | | | | | 12-13 | 5.1 Define a robot | Explain the term robot | Whiteboard and | Identify components of | Guide the student to | Pictures and | | | | | | | markers, PLC | robot based on | Identify components | videos | | | | | <u> </u> | Explain the basic | Textbooks | configuration and | of robot based on | | | | | | | | Journals | application. | configuration and | | | | | | | | Projector. | | application. | | | | | | 5.3 Explain the Laws of Robotics | Explain the Laws of Robotics | | | | | | | | | Robotics | Robotics | | | | | | | | | 5.4 List the Different | Explain different types | | | | | | | | | | of Robots. | | | | | | | | | | | | | | | | | | | 5.5 List Robot Part and | List Robot Part and | _0_ | | | | | | | | Explain their functions. | Explain their functions. | | | | | | | | | | | | | | | | | | | _ | Explain Robot | | | | | | | | | Technical Specification. | Technical Specification | | | | | | | | | 5.7 Describe the following: | Specification | | | | | | | | | | Describe the following: | | | | | | | | | Kinematics | Robot Anatomy | | | | | | | | | Mechanisms | Kinematics | | | | | | | | | Drive Systems | Mechanisms | | | | | | | | | Robot Sensors | Drive Systems | | | | | | | | | Vision Systems | Robot Sensors | | | | | | | | | Voice Recognition | • Vision Systems | | | | | | | | | NO. | • Voice | | | | | | | | | | | T | | | | |--------|---|-------------------------|---------------|-------------------------------------|--------------------|-------------------| | | 5.7 Explain the basic concept of robot Control. | | | | CA | | | | | Explain the basic | | | | | | | | concept of robot | | | | | | | Robotics. | Control. | | CALL | | | | | 5.9 Explain the | Explain Safety in | | | | | | | Application of | Robotics. | | | | | | | Robotics. | | | | | | | | Robotics. | Explain the | | 10 N | | | | | | Application of | | | | | | | | Robotics. | | | | | | Genera | al Objective 6.0: Understand | Mechatronics System | | | 1 | - | | 14 | 6.1 Define Mechatronics. | Explain different | Whiteboard | Identify household | Guide students to: | Instrumental | | İ | | mechatronics | Markers | items that can be | Identify | diagrams | | | 6.2 List different | | PLC Textbooks | characterized as | household items | Training board | | | mechatronics | | | mechatronic System. | that can be | Plug-in- cables | | | system. | Explain | Journals | - | characterized as | | | | | Mechatronics | Projector | Identify components | mechatronic | Dc power source | | | 6.3 Explain | system primary | | the task above that | System. | Washing machine | | | Mechatronics | elements. | | help identify them as | | Bread toaster and | | | system primary | | | mechatronic | Identify | Hand drilling | | | elements. | Explain the | | Systems. | components the | Machine. | | | | applications of | | | task above that | iviaciiiic. | | | 6.4 Explain the | mechatronics system. | | Identify the | help identify | | | | applications of | | | characteristics of the | them as | Transducer | | | mechatronics | Explain different | | following: | mechatronic | Trainer | | | system. | types of systems | | LVDT | Systems. | | | | | TALL OF ST ST STORY | | Variable | Systems. | LVDT. | | | 6.5 Define a System | Explain the function of | | • Variable Capacitor. | Identify the | Variable | | | | each type in 1.6. | | 1 | characteristics | Capacitor. | | | 6.6 Explain different | | | Light Dependent | Characteristics | Capacitor. | | | | | 1 | 1 | | 1 | |------|---|-----------------------------|---------------|--------------------------------|--------------------------------|--------------------| | | types of systems | | | Resistor | of the following: | Light Dependent | | | | Explain the | | Resistance | • LVDT | Resistor. | | | 6.7 State the function of | following: | | Temperature | Variáble | Resistance | | | each type in 1.6. | • Transducer | | Detector | Capacitor. | Temperature | | | | Sensors | | • Thermistor. | Light | Detector. | | | 6.8 Explain the | | | • Thermocouple. | Dependent | Thermistor. | | | following: | Explain the different | | | Resistor | | | | • Transducer | types of transducers | | Identify different | Resistance | Thermocouple. | | | • Sensors | and sensors | | drives | Temperature | | | | Actuators | D: | | '(10) | Detector | AC and DC | | | COF 1: 41 1:00 4 | Discuss the | | | • Thermistor. | motors | | | 6.9 Explain the different | applications of sensors and | | | Thermocoup | | | | types of transducers, sensors and actuators | transducer. | | | le. | | | | sensors and actuators | transducer. | | | | | | | 6.10 Explain the | Explain the | | | Identify | | | | applications | applications | | | different drives | | | | of sensors, transducer | of sensors, | _0_ | | | | | | and actuators. | transducer and | | | | | | | | actuators. | | | | | | | | | | | | | | ener | al Objective 7.0: Know how | | | | | | | 15 | 7.1 Describe HMIs and | Explain HMIs and their | Whiteboard | Program a basic HMI for | Guide students to: | PLC device with | | | their interaction with | interaction with PLCs. | Markers | a PLC system. | Design and program | training board | | | PLCs. | V | PLC Textbooks | | a basic HMI for a | equipped with | | | | Explain how to design | Journals | | PLC system. | manual switches | | | 7.2 Explain how to design
 | Projector | | | for digital inputs | | | | HMI for a PLC system. | | | | lor digital input | | | III (I C DI C | | | | | HMI panal DI C | | | HMI for a PLC system. | | | | | HMI panel. PLC | | | | | 289 | | | | | | | | 289 | | | | | | HMI for a PLC system. | | | | | | | | | | | | | | | | • | | | | | | | 6.11 | | | & HMI programming software (depends on PLC platform: TIA Portal, MELSEC, TwidoSuite, Studio 5000 Logix Designer) | |----------------------------------|-------|--|--| | EVALUATION: 60% EXAMINATION: 40% | ORIVE | | | | | 290 | | | ## PRACTICAL MANUAL | | PRACTICAL MANUAL | |-------------------------------------|--| | Algebra And Elementary Trigonometry | 1. Establish the laws of Indices. | | MTH 112 | 2. Solve problems using the laws of | | | indices | | | 3. Solve simple logarithms problem. | | | 4. Apply knowledge from 3.1in | | | termination as laws from experimental | | | data. | | | 5. Ask the students to draw graphs | | | 6. Solve quadratic equation by | | | factorisation. | | | 7. Solve set theory problems using Venn | | | diagrams. | | | 8. Obtain the formula for nth term and the | | | first n terms of an A. P. | | | 9. Ask the students to apply progression | | | to solve problems. | | | 10. Apply the techniques of vectors to | | | solve various problems | | | 11. Apply the parallelogram law in solving | | | problems including addition and | | | subtraction of vectors. | | | 12. Compute the resultant of coplanar | | | forces acting at a point using | | | algebraic and graphical method | | | 13. Apply the techniques of resolution and | | | resultant to the solution of | | | problems involving coplanar forces. | | | 14. Apply vectorial techniques in solving problems involving relative velocity. 15. Compute the scalar product of given vectors. 16. Compute the scalar product of given vectors. | |---------------------------|---| | | 17. Calculate the direction ratios of given vectors.18. Calculate the angle between two vectors using the scalar product | | | 19. Solve carious equations as indicated in section 10. 20. Apply algebraic and graphical methods | | | in solving two simultaneous equations a linear equation and a quadratic equation | | | 21. Apply the algebraic and graphical methods in solving two simultaneous and quadratic equations. 22. Apply determinants of order 2 and 3 in | | Technical Drawing MEC 111 | solving simultaneous linear equations. 1) Identify the different types of drawing instruments, equipment and materials. | | 412 | 2) Observe the precautions necessary to preserve the items identified above. 3) Use each of the items mentioned | | 10/4 | above. 4) Maintain the various instruments and | - equipment. - 5) Illustrate the various conventions present in graphical productions of construction lines, finished lines, hidden and overhead details projections, centre lines, break lines, dimensioning of plane, elevation and sections of objects. - 6) Prepare drawing sheets with the following: - Margins - Title block etc. - 7) State the various standards of drawing sheets. - 8) Print letters and figures of various forms and characters. - 9) Illustrate conventional signs, symbols and appropriate lettering characters. - lo) Construct parallel and perpendicular lines. - Construct and bisect lines, angles and areas. - 12) Divide a straight line into given number of equal parts. - 13) Identify polygons (regular or irregular). - 14) Construct regular polygons with N sides in a given circle, given: - Distance across flats - Distance across corners. - 15) Carryout simple geometrical constructions on circles e.g.: - Diameter of a circle of a circle of a given circumference. - The circumference to a circle of a given diameter - A circle to pass through 3 points - A circle to pass through 2° points and touch a given line - A circle to touch a given smaller circle and a given line - Tangents to circles at various points - An arc of radius tangent - To two lines at an angle to less than and more than 90 - An arc externally tangent to two circles: inscribing and circumscribing circles - 16) Construct ellipse by using: - Trammel method - Concentric circle method. - 17) Construct plane scales and diagonal scales, using appropriate instruments. - 18) Draw a square in isometric and oblique forms. - 19) Draw a circle in Isometric and oblique forms. - 20) Draw an ellipse in Isometric and oblique forms. - 21) Draw a polygon with a minimum of eight sides in Isometric and oblique forms. - 22) Dimension holes, circles, arcs and angles correctly on isometric and oblique projections. - 23) Use appropriate convention symbols and abbreviations. - 24) Project views of three-dimensional objects on to the basic planes of projection in both first and third angle to obtain: - The front view or elevation - The top view or plan. - The side view - 25) Draw the lines of intersections of the following regular solids and planes in both first and third angles: - Two square-prisms meeting at right angles. - Two dissimilar square prisms meeting at an angle. - Two dissimilar square prisms | | meeting to an angle • A hexagonal prism meeting a square prism at right angles. • Two dissimilar cylinders meeting at an angle. • Two dissimilar cylinders | |---|---| | Basic Workshop Practice and Technology
MEC 113 | meeting at right angle, their centres not being in the same vertical plane 1) Demonstrate all safety rules and regulations in the workshop | | | 2) Use safety equipment and Personal Protection Equipment 3) Follow safety procedures and precautionary measures 4) Inspect the following equipment in the workshops: Air receivers | | MALB | Ropes and Chains Pulley blocks Forklift carriage Mobile and overhead cranes Derricks and gantries 5) Differentiate between: | | WATO | • Hand tools and machine 296 | tools - Bench tools and machine cutting tools - 6) Identify marking out tools used on the bench typical workshop practical exercises. - 7) Use marking-out tools on the bench correctly - 8) Identify this bench cutting tools - 9) Produce simple objects using bench/hand tools such as: - Files - Chisels - Scrapers - \Saws etc. - 10) Maintain files, dividers, saws, gauges try squares, bevel edge square etc. - 11) Write process sheet or operation layout for the component to be produced. - 12) Identify the differences and similarities between measuring and testing equipment in mechanical workshop with regards to: - Principle of operation - Construction - Use - 13) Perform simple measuring exercises using steel rules, vernier calipers and micrometers. - Use dial indicators to: - Set up jobs on the lathe - Roundness testing etc. - 14) Carry out exercises involving flatness, squareness, straightness and surface finish test. - 15) Perform taper measurement on jobs using vernier protractor and sine bars. - 16) Inspect jobs using simple comparators Operate different types of drilling machine - 17) Carry out drilling operations such as: - Counter-boring - Counter-sinking - 18) Grind drill bits accurately - 19) Select correct drilling speeds - 20) Indicate the nomenclature of a twist drill: - Clearance angle - Rake angle - Point angle etc. - 21) Calculate the speeds of various sizes of drills using appropriate formulae. - 22) Identify various metal joining operations - 23) Fabricate metal container by Knock-up joining - 24) Join metals by the grooving technique - 25) Fabricate metal container by knock-up joining - 26) Carry out soft soldering - 27) Identify the tools used for wood work - 28) Mark out and prepare wood for various operations as described in 7.2 - 29) Carry out various woodwork operations using the tools in 7.1 -7.3 - 30) Maintain all tools and machines used - 31) Identify the steps and tools involved in making a simple machine part using wood as material - 32) Carry out reaming operations: - On the bench - On drilling/lathe - 33) Select correct speeds for reaming small and large holes - 34) Select correct tapping drill size - 35) Select correct taps - 36) Carry out tapping operation: - On the work bench - On drilling machine - On lathe - 37) Calculate tapping drill sizes - 38) Identify various types of plastic groups | 39) Identify the characteristics of each type of plastic. 40) Use conventional metal cutting tools to perform operations on plastics. 41) Carryout joining operations using plastics Electrical Drawings EEC 111 EEC 111 1. Identify electrical and electronic symbols 3. Read and interpret Electrical Bunding and Electronic diagrams. 4. Draw Symbolic Electrical circuits 5. Draw Building wring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments' from the symbolic diagrams to wiring diagrams | | |
--|---------------------|--| | 40) Use conventional metal cutting tools to perform operations on plastics. 41) Carryout joining operations using plastics Electrical Drawings EEC 111 1. Identify electrical and electronic symbols 3. Read and interpret Electrical Building and Electronic diagrams. 4. Draw Symbolic Electrical circuits 5. Draw Building wiring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | | | perform operations on plastics. 41) Carryout joining operations using plastics Electrical Drawings 1. Identify electrical and electronic symbols 2. Identify different standards of symbols 3. Read and interpret Electrical Building and Electronic diagrams. 4. Draw Symbolic Electrical circuits 5. Draw Building wiring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | | | ### description of the image | | | | Electrical Drawings ELEC 111 1. Identify electrical and electronic symbols 2. Identify different standards of symbols 3. Read and interpret Electrical Building and Electronic diagrams. 4. Draw Symbolic Electrical circuits 5. Draw Building wiring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | | | Electrical Drawings EEC 111 1. Identify electrical and electronic symbols 2. Identify different standards of symbols 3. Read and interpret Electrical Burding and Electronic diagrams. 4. Draw Symbolic Electrical circuits 5. Draw Building wiring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | | | symbols 2. Identify different standards of symbols 3. Read and interpret Electrical, Building and Electronic diagrams. 4. Draw Symbolic Electrical circuits 5. Draw Building wiring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | Electrical Drawings | · · · · · · · · · · · · · · · · · · · | | Identify different standards of symbols Read and interpret Electrical Building and Electronic diagrams. Draw Symbolic Electrical circuits Draw Building wring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. Draw a simple electrical circuit with voltage and current source and other circuit elements. Identify standard symbols Perform Power experiments" from the | | | | Read and interpret Electrical, Building and Electronic diagrams. Draw Symbolic Electrical circuits Draw Building wiring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. Draw a simple electrical circuit with voltage and current source and other circuit elements. Identify standard symbols Perform Power experiments" from the | | | | and Electronic diagrams. 4. Draw Symbolic Electrical circuits 5. Draw Building wiring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | | | 4. Draw Symbolic Electrical circuits 5. Draw Building wring diagrams showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | | | showing all components, wiring, conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | | | conduits, switch boxes, wall plugs. 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | 5. Draw Building wiring diagrams | | 6. Draw a simple electrical circuit with voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | showing all components, wiring, | | voltage and current source and other circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | conduits, switch boxes, wall plugs. | | circuit elements. 7. Identify standard symbols 8. Perform Power experiments" from the | | 6. Draw a simple electrical circuit with | | 7. Identify standard symbols 8. Perform Power experiments" from the | | | | 8. Perform Power experiments" from the | | | | | | | | symbolic diagrams to wiring diagrams | | _ | | | | | | showing terminals and earth points and | | | | how " 2 channel Oscilloscopes" should | | | | be connected without shorting the | | | | circuit. 9. Draw a typical electrical installation | Va. | | | 9. Draw a typical electrical installation project using standard symbols. | | | | 10. Draw electronic circuits using standard | | | | | symbols 11. Identify machine diagrams 12. Identify redline drawings 13. Carryout redline drawings marking 14. Use computer software to draw electrical installation diagrams 15. Draw machine diagrams using computer software 16. Draw electronic circuit diagrams using | |---|--| | Introduction to Digital Electronics EEC 112 | computer software 1. Demonstrate conversion from decimal and hexadecimal 2. Investigate the logical behavior of AND, OR, NOT, NAND, NOR, and EX-OR gates. 3. Show the NAND gate as a Universal Gate 4. Interpret truth tables for logic gates 5. Verify Boolean Laws using the various logic gates 6. Construct the truth table of various logic gates and combination circuits using logic gates. 7. Evaluate various combinational circuits such as adders, subtractors, 8. Design and implement adders and subtractors using logic gates 9. Implement adders and subtractors using logic gates | | WALL | 301 | - 10. Design and implement of 4-bit binary adder/subtractor and BCD adder using digital ICs - 11. Implement of 4-bit binary adder/subtractor and BCD adder using digital ICs - 12. Interpret truth tables for multiplexers and de-multiplexers - 13. Implement multiplexer and demultiplexer using logic gate - 14. Design multiplexer and demultiplexer using logic gates and study of IC 74150 and IC 74154 - 15. Evaluate flip-flops, counters, and shift registers. - 16. Implement SISO, SIPO, PISO, and PIPO shift registers using flip-flops. - 17. Verify of 4-bit ripple counter and
Mod-10, Mod-12, and Mod-N ripple counters - 18. Simulate various combinational circuits, sequential circuits flip-flops, and counters. using relevant software - 19. Interpret Truth Tables for latches, flip flops, and counters - 20. Identify the Microcontrollers. - 21. Identify Microcontroller Input/Output ports, power pins, reset and clock pins. - 22. Perform Basic Programming. | | 23. Load the program from PC to microcontroller via programmer. 24. Setup the hardware (vero board, breadboard, microcontroller, led, sensors. | |--|---| | Technical Documentation and Report Writing EEC 113 | 25. Interface microcontrollers with sensors 1. Identify types of technical documentation 2. Operate text editors: • Microsoft Word, • LaTeX. 3. Prepare simple drawings, diagrams using AutoCAD. 4. Conduct simple calculations and prepare graphs using Microsoft Excel. 5. Use collaborative platform: • Google Docs. 6. Prepare project proposal including its specific sections: • Client requirements • Specification • Proposed drawings • Bill of materials • Material and labour cost estimation • Execution period 7. Write a project report based on list of project sections. | | | 8. Identify mistakes in technical report and correct them. | |----------------------------------|---| | | 9. Identify guidelines for document calculations. | | | 10. Identify guidelines for graphs and numerical data preparation and | | | representation. | | | 11. Fill a Logbook based on work carried | | | out. | | | 12. Write a laboratory experiment report.13. Write a non-technical report for: | | | Progress report | | | New Development | | | Recommendation | | | 14. Prepare complete RAMS document. | | | 15. Prepare of a comprehensive technical | | | | | | project related to hypothetical or real-
world scenarios in Electrical and | | | Electronics Engineering - individual or | | | group projects. | | | 16. Present the projects to the class for | | | 17. Peer and teacher evaluation based on | | | clarity, accuracy, and professionalism. | | Electrical Engineering Science I | 1. Determine the effect of variable EMF | | EEC 114 | on single loop DC circuit. | | | 2. Measure current and voltage of power | | | source in a simple circuit using a | | x()\ | multimeter | | | Mon | |--------------------------------------|---| | | 3. Verify Ohm's law. 4. Demonstrate series and parallel circuits. 5. Verify the effect of varying resistance on current flow in a conductor. 6. Verify the Kirchhoff's Laws with DC circuits. 7. Verify superposition principle. 8. Determine the temperature coefficient of a resistance 9. Verify the heating effect. 10. Perform experiment to determine the DC power. 11. Verify Coulombs' Law using experiment 12. Perform experiment on charging and | | Industrial Health and Safety EEC 115 | discharging of a capacitor. 1. Identify different types of safety signs. 2. Identify workplace hazards in a real or simulated environment. 3. Document workplace hazards in a real or simulated environment. 4. Perform risk assessments and recommend control strategies. 5. Select, use, and maintain correct PPE for specific tasks. 6. Select appropriate signage according to location-specific hazards. 7. Install appropriate signage according to location-specific hazards. | - 8. Apply relevant legislative requirements to assess workplace compliance. - 9. Interpret key legislative safety signage and documents. - 10. Practice legal reporting procedures for unsafe conditions under OHS law. - 11. Identify and record hazards in a work environment. - 12. Record hazards in a work environment. - 13. Conduct a basic risk assessment and suggest control measures. - 14. Apply appropriate hazard control methods using the hierarchy of controls. - 15. Report on hazards to supervisors or safety reps - 16. Identify control measures in place and assess their adequacy and effectiveness. - 17. Apply the hierarchy of control to select appropriate measures for specific hazards. - 18. Identify safety and health requirements. - 19. Identify Safety signs and symbols. - 20. Demonstrate the use of PPE - Safety boots - Helmets - Goggle - Face Shield - Coverall - Earmuff - Harness - Nose Mask - Hand glove - 21. Organize a simulated fire drill. - 22. Debrief students post-exercise. - 23. Demonstrate safe manual handling or machinery use. - 24. Conduct role-play of an incident and reporting. - 25. Perform first aid - 26. Carry out CPR - 27. Identify and use first aid materials and tools. - 28. Apply appropriate procedures for treating minor bleeding and wounds. - 29. Immobilize limbs in cases of suspected | | fractures or sprains. | |----------------------------|---| | | 30. Perform abdominal thrusts for choking victims (adults and children). | | Electrical Power I EEC 121 | Organize Industrial visits to observe the layout of Generation, Transmission and Distribution of power systems. Draw the layout of Steam plant, Diesel plant, Gas plant, Solar and wind plant. Draw the layout of generation transmission and distribution of electrical power systems. Draw the diagram of generating station, transmission and distribution networks with voltage levels. Identify the basic components of distribution systems Determine balancing situations of connected grid to distribution network to ensure power and load demand are equal via calculation Identify the parts a fuse. Demonstrate the function of a fuse. Identify the moulded case circuit breaker. Demonstrate the function of an isolator. Identify the difference between a circuit breaker and an isolator | | | 12. Identify types of insulators. | |----------------------|--| | | 13. Demonstrate the applications of | | | insulators in distribution network | | | insulators in distribution network | | Electrical Machine I | Determine direction of magnetic field. | | EEC 122 | 2. Disassemble and assemble a DC | | | Generator. | | | 3. Determine a DC Generator terminal. | | | 4. Determine the characteristics of | | | separately excited DC Generator. | | | 5. Perform an experiment to show the | | | relationship between armature voltage | | | and load current | | | 6. Interpret a Motor name plate | | | 7. Conduct an experiment on DC Shunt | | | motor Characteristics. | | | 8. Carry out experiment on DC Series | | | motor Characteristics. | | | 9. Perform an experiment on DC | | | Compound motor Characteristics. | | | 10. Carry out an experiment on starting DC | | | motor using a relay | | | 11. Perform experiment on the | | • | Characteristic of Split phase induction | | | motor. | | | 12. Carry out experiment on Characteristic | | | of Capacitor Start motor and Capacitor | | | run motor | | | 13. Inspect and maintain a Motor | |---------------|---| | | 14. Perform troubleshooting and repair of | | | AC motors | | Electronics I | Construct a simple electronic circuit | | EEC 123 | consisting of two resistors in series as | | | a voltage divider | | | 2. Identify Semiconductor components | | | with their circuit symbol. | | | 3. Carry out an experiment on breadboard | | | to implement circuit from the | | | schematic diagram. | | | 4. Perform experiment on how to solder | | | and unsolder components on a printed | | | wiring circuit board | | | 5. Demonstrate soldering Techniques | | | 6. Conduct an experiment on | | | measurement of direct current in a | | | circuit. | | | 7 Carry out experiment to measure the | | | effect of resistance and observe the | | | effect of voltage in controlling current | | | in a circuit. | | | 8. Perform an experiment to observe and | | | measure input and output waveforms of | | | a full – wave rectifier | | | 9. Carry out experiment to determine the | | |
time constant of a Capacitor | | | 10. Perform an experiment to show Zener | | 4. Verify Lenz's law of electromagnetic induction.5. Determine the inductance of a coil. | Electrical Engineering Science II EEC 124 | diode as a Voltage regulator. 11. Carry out experiment to show Static Characteristic of a PNP Transistor in the Common base configuration 12. Test Bipolar Junction Transistor. 13. Test PN Junction diode with Multimeter 14. Perform experiment to determine the Characteristic of thyristors 15. Carry out experiment to show Static Characteristic Thyristors 16. Carry out experiment to investigate thyristor switching 1. Determine the B-H curve for magnetic material (Hysteresis curve) 2. Determine the magnetic energy loss in magnetic materials 3. Verify Faraday's law of electromagnetic induction | | |---|---|---|--| | 6. Determine energy loss in an inductor. 7. Determine the energy loss in an inductor. 8. Determine the equivalent inductance of serial and parallel inductive circuits. 9. Determine the magnetic coupling in a | | Verify Faraday's law of electromagnetic induction Verify Lenz's law of electromagnetic induction. Determine the inductance of a coil. Determine energy loss in an inductor. Determine the energy loss in an inductor. Determine the equivalent inductance of serial and parallel inductive circuits. Determine the magnetic coupling in a | | | | transformer 10. Determine the frequency, period and amplitude of a sinusoidal signal. 11. Determine the series and parallel resonance of an AC circuit. | |---|--| | | 12. Determine the Quality-factor (Q-factor) of series and parallel RLC circuits. | | Electrical and Electronics measurement and Instrumentation EEC125 | 1. Identify the instruments listed below: Digital multimeter Analogue multimeter Voltage tester Clamp meter Oscilloscope Insulation resistance tester (Megger) Tachometer Wattmeter Thermometer Frequency Counters Battery tester Demonstrate ohm's law using variable resistance and variable E.M.F Demonstrate practical examples of error Determine the resistivity of materials Verify Kirchhoff's current and voltage | law - 6. Demonstrate superposition Theorem - 7. Demonstrate the use of the following using different circuits: - Digital multimeter - Analogue multimeter - Voltage tester - Clamp meter - Oscilloscope - 8. Measure voltage and current by connecting Multiplier and Shunt respectively. - 9. Charge and discharge a capacitor, inductor - 10. Calibrate and measure with multimeter. - 11. Measure direct current (d.c) voltage in experiments using multimeter - 12. Measure alternating current (a.c) voltage in experiments using digital multimeter - 3. Calculate the Values of the multiplier and shunt. - 14. Calibrate a moving coil instrument - 15. Use meters to measure: - Voltage - Current - Variable frequencies | Telecommunication I EEC 126 | Earth resistance Insulation resistance Current (Clamp meter) Sketch a diagram of the following meters: Digital Voltmeter Frequency Counter Ohmmeter Ammeter Merger LCR meter Identify earth point Visit a communication service provider company Identify the basic segments in the block diagram of the communication system. Visit AM and FM radio stations Demonstrate modulation and demodulation in AM and FM Modes Yisit AM and FM Radio stations Demonstrate the operation of receivers | |--|--| | Electrical Installation of Buildings EEC 127 | 1) Identify the standard symbols 2) Sketch the standard symbols 3) Interpret a schematic diagram 4) Interpret a wiring diagram | - 5) Conduct earth resistance test to ascertain the earth resistance value - 6) Identify electrical symbols - 7) Insert electrical symbols for the installation layout in building drawings - 8) Produce a single line diagram based on the layout - 9) Interpret building drawings. - 10) Identify cables and their sizes. - 11) Select appropriate cables for different uses - 12) Draft electrical services for a residential building e.g. 3 bedroom flat - 13) Demonstrate installation of various types of joints using PVC flexible cables - 14) Design an electrical service for a 3-bedroom flat. - 15) Identify cable colour coding commonly used in Nigeria. - (6) Carryout laying of cables using different trunking methods. - 17) Apply I.E.E. wiring Regulations related to cables and their uses. - 18) Identify types of joints Extract items for bill of quantities from drawings. - 19) Conduct market survey (hypothetical) - 20) Assess the cost of materials. | | 21) Prepare typical bill of quantity | |-------------------------------------|---| | | 22) Identify the components of Solar power system. | | | 23) Install Closed-Circuit Television (CCTV). | | | 24) Install a satellite Television with its | | | accessories. | | | 25) Install Electrical service mains for a | | | premises | | Tania and Lineau Aleshus | 26) Install a prepaid meter in a premises | | Logic and Linear Algebra
MTH 202 | 1) Translate sentences into symbolic form using quantifiers. e.g.: "some freshmen | | W1111 202 | are intelligent can be stated as "for | | | some x,x is a freshman and x is | | | intelligent" can be translated | | | in symbols as (ix) (f x & ix) | | | 2) Give illustrative examples of the | | | fundamental principles of | | | permutations. | | | 3) Establish the formula $nPr = \underline{n!} (n-r)!$ | | | 4) Solve problems of permutations with | | | restrictions on some of. the objects | | | 5) Solve problems of permutations in | | | which the objects may be repeated. | | | 6) Solve problems of permutations of N | | | identical objects. | | | 7) State and prove the theorem nCr-1+ | | <u> </u> | ${}^{n}Cr = {}^{n+1}Cr$ | | | 8) Illustrative with examples the method of mathematical induction. 9) Identify the binomial theorem for a rational number. 10) Identify the properties of binomial coefficients 11) Apply binomial expansion in approximations (simple examples only). 12) Determine a determine the minors and cofactors 2 by 2 and 3 by 3 matrixes 13) State and prove the theorem "if two | |-----------------------------|--| | Electrical Power II | rows or two columns of a matrix are interchanged, the sign of the Value of its determinant is changed 14) Identify the minors and cofactors of a determinant 15) Identify the method of evaluating determinants. | | Electrical Power II EEC 211 | Visit a power plant Demonstrate the layout diagrams of power plants Assemble the components of the PV Power generation system for domestic application. Draw a typical load curve Visit a transmission substations Assemble poles, pole supports, and | | WATE | 317 | | | insulators in a dead substation. 7) Connect voltage and current transformers for measurements in the transmission line model. 8) Demonstrate the stages of construction for conductors and laying underground cables: • Two-core cable • Three core cable | |-------------------------------
--| | Electrical Machine II EEC 212 | 1) Carryout experiments on circuit characteristics of a 3-phase induction motor. 2) Carryout experiment on circuit characteristics of an alternator/A.C generator 3) Perform experiment to determine relationship between excitation current and output terminal voltage 4) Perform experiment to determine relationship between speed and output terminal voltage. 5) Demonstrate the construction of electrical machines. 6) Interpret name plate of synchronous and induction motors and generators 7) Demonstrate the conversion of energy | | WILL | in singly excited systems. 318 | - 8) Determine the terminal of a 3 phase induction motor - 9) Determine the terminal of a 3 phase synchronous generator. - 10) Measure the electrical quantities of 3 phase induction motor. - 11) Identify the basic difference between motors and generators. - 12) Demonstrate the techniques for motor starting and control: - Direct online starter - Star-Delta starter - Soft starter - Variable frequency drive - 13) Visit power substation/show video clips - 14) Classify transformers - 15) Monitor temperature of a transformer. - 16) Identify methods of cooling transformers. - 17) Sketch phasor diagrams of transformer on load and on No-load - 18) Sketch the equivalent circuit of a transformer - 19) Perform experiment on open circuit characteristics of a single phase transformer. - 20) Perform experiment on open circuit | | characteristics of three phase | |----------------|--| | | transformers. | | | 21) Carryout experiment on close circuit | | | characteristics of a single phase | | | transformer. | | | 22) Perform experiment on close circuit | | | characteristics of three phase | | | transformer. | | | 23) Perform experiment on | | | identifying polarity of a 3-phase | | | transformer. | | | 24) Conduct transformation ration test on a | | | transformer' | | | 25) Use the Open-circuit and Short-circuit | | | tests to determine the equivalent circuit | | | parameters. | | | 26) Sketch possible arrangement of three transformer windings. | | Electronics II | 1) Carry out experiment on FET Static | | EEC 213 | Characteristics in common source | | 210 | configuration | | | 2) Demonstrate the applications of | | | MOSFET: | | | Switching (DC-DC Converter) | | | Amplification | | | Variable resistance (Signal | | MAL | processing) | | ~~~ | 3) Perform experiment on common source | | | amplifier characteristics. 4) Carry Out experiment on common gate amplifier characteristics | |--------------------------------------|--| | | 5) Conduct an experiment on common drain amplifier characteristics | | | 6) Perform an experiment on Characteristics of transformer coupled Class A amplifier: | | | 7) Identify the frequency response characteristics of amplifier. | | | 8) Identify the relationship impedance, power and phase relationship. | | Electric Circuit Theory I
EEC 214 | Draw to scale phasor diagrams for a.c circuits. Draw phasor diagrams that the current | | | in a capacitor circuit leads voltage and the current in the inductive circuit lags the voltage. | | | 3) Investigate the behaviour of series-
parallel connected resistors. | | 80 | 4) Determine the voltage divider.5) Test the inductor using ohmmeter.6) Demonstrate how to test capacitor by | | | observing their charging and discharging | | , ON' | 7) Convert a.c signal in polar form to the Rectangular form. | | | 321 | | | | - 8) Demonstrate how to verify Ohm's law. - 9) Simulate resonance conditions in series and parallel RLC circuits. - 10) Show with the aid of phasor diagrams that the current in a capacitor circuit leads voltage and the current in the inductive circuit lags the voltage. - 11) Show wave forms of lagging and leading angles of voltage and current on a Cartesian plane. - 12) Demonstrate the application of mesh circuit analysis. - 13) Demonstrate the application of Nodal circuit analysis. - 14) Reduce a complex network to its series or parallel equivalent. - 15) Derive the formula for the transformation of a delta to a star network and vice versa. - 16) Measure the total resistance of combinations of parallel connected resistors. - 17) Determine by experiment the total resistance of resistors connected in series. - 18) Identify star and delta networks - 19) Verify Thevenin's theorem. - 20) Demonstrate the application of Nodal | | circuit analysis. 21) Verify the Millman's theorem 22) Use Thevenin's theorem to analyze energy delivery from a battery to a load. | |---|--| | Use of Electrical and Electronics Instruments EEC 215 | 9) 1) Draw the block diagram of an Oscilloscope 2) Measure D.C voltage in experiments using OSCILLOSCOPE 3) Measure A.C voltage in experiments using OSCILLOSCOPE 4) Measure range of frequencies with OSCILLOSCOPE 5) Measure phase angles with OSCILLOSCOPE 6) Sketch Power meter 7) Measure DC and AC power 8) Measure DC and AC power for single and three phase circuits 9) Measure power factor 10) Determine temperature effect on resistance 11) Verify temperature effect on semiconductor diode 12) Measure temperature range using digital thermometer | | WATE | 13) Design a simple controller circuit 323 | | Telecommunication II
EEC 216 | 1) Demonstrate amplitude modulation | |----------------------------------|---| | EEC 210 | with signals in audio frequency band. 2) Demonstrate amplitude demodulation | | | with AM modulated signal. | | | 3) Determine the frequency deviation | | | with FM modulated signal. | | | 4) Demonstrate the frequency | | | demodulation with FM modulated | | | signals. | | | 5) Determine how radio receivers operate | | | 6) Visit a television station | | | 7) Use appropriate software to simulate | | | the wave propagation of antenna 8) Set up a simple cable network | | | 9) Configure a router | | | 10) Connect two routers or access points | | | 11) Transfer information using: | | | • Wireless fidelity (WI-FI) | | | Bluetooth | | | • Intranet | | Computer Hardware and Software I | Identify computer components | | EEC 217 | 2) Dismantle a computer system and show | | ELC 217 | the: | | | RAM card | | | Hard Disk | | VO, | <u>'</u> | | | 324 | - Processors. - 3) Identify: - Input mechanisms - 4) Output Mechanisms Assemble computer sub-units. - 5) Identify the memory, ports, CPU and power supply unit - 6) Identify the computer CMOS battery for memory retention. - 7) Identify the various types of port - Parallel - Serial - USB - 8) Identify the components of a computer hardware: - Input/output System Unit - Processing unit - Storage devices - 9) Demonstrate how to start and shut down a computer system. - 10) Identify different types of cables and connectors. - 11) Demonstrate how to connect Computer Ports to peripherals. - 12) Demonstrate how you can setup and connect a printer to a computer. - 13) Setup some printing exercise - 14) Identify a modem and draw a block diagram of a modem - 15) Draw a block diagram showing the interconnection of the Sub-units of the motherboard. - 16) Identify computer components - 17) Dismantle a computer system and show the: - RAM card - Hard Disk - Processors. #### 18) Identify: - Input mechanisms - Output Mechanisms - 19) Access computers correctly through Windows operating system such as: - Open/Close a window - Program Manager Button bars/scroll bars/ menu bars - Moving from one Window to another - 20) Create a file and folder - 21) Manipulate files (moving, copying, saving, deleting). - 22) Manipulate Print Manager. - 23) Demonstrate the competent use of a word-processing package such as: MSWord (or equivalent standard). Entering text Formatting text (emboldening, font size, italicizing). Creating and Saving text files Editing and moving text Importing objects Spelling and Grammar Che Create tables, text boxe equations. Type a short document and save it. Edit a document and carryout a spelling check. Demonstrate the use of tables. Use the Internet to retrieve information. World Wide Web(WWW) Download information Paste retrieved information into an appropriate application Use-mail to send and receive messages. National and international e-mail E-mail attachments (sending& receiving) 23) | Research Methods in Electrical and | 1) Identify sampling techniques | |---|--| | Electronics Engineering Technology | 2) Use the selected technique to a draw | | EEC 218 | sample | | | 3) Identify types of data | | | 4) Identify sources of data |
 | 5) Use data collection techniques to | | | conduct research | | | 6) Use statistical tools to present data | | Electrical Power III | 7) Write research report 1. Determine the sending and receiving end | | EEC 221 | voltage of the transmission line | | LLC 221 | 2. Determine the voltage regulation and | | | transmission efficiency. | | | 3. Conduct a load flow study of two bus | | | power network using appropriate | | | software | | | 4. Run programme for a load flow | | | analysis of a two-bus power network. | | | 5. Construct the power circle diagram. | | | 6 Formulate the nodal admittance matrices | | | for a two-bus network. | | | 7. Calculate the load flow in an | | Q | interconnected system | | | 8. Classify the variables in 1.9 into control | | | dependent and independent | | | 9. Identify the faults on generators, transformers and T-line. | | | 10. Insert an open circuit and earth faults | | | 10. Insert an open circuit and carm faults | | ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 328 | | on transmission lines using appropriate software 11. Determine the fault levels on typical power systems. 12. Determine the MVA fault level on typical power systems. 13. Draw typical waveforms of short circuit currents in power systems. 14. Plot graphs for voltage and current surges when R is less than Z, (R X Y) 15. Test Insulators to determine their voltage distribution and string efficiency. 16. Draw a typical surge waveform. 17. Identify lightning arrester 18. Classify relays Computer Hardware and Software II EEC 221 1. Deproduct how to carry out computer maintenance 2. Repair common power supply issues. 3. Upgrade laptop components (RAM, SSDs, Wi-Fi cards). 4. Disassemble and repair a faulty motherboard. 5. Upgrade components in a laptop or deskton to improve performance. | | | | |--|---|--|------| | power systems. 12. Determine the MVA fault level on typical power systems. 13. Draw typical waveforms of short circuit currents in power systems. 14. Plot graphs for voltage and current surges when R is less than Z, (R Z) 15. Test Insulators to determine their voltage distribution and string efficiency. 16. Draw a typical surge waveform. 17. Identify lightning arrester 18. Classify relays. Computer Hardware and Software II EEC 221 2. Repair common power supply issues. 3. Upgrade laptop components (RAM, SSDs, Wi-Fi cards). 4. Disassemble and repair a faulty motherboard. 5. Upgrade components in a laptop or | | software | CATI | | 13. Draw typical waveforms of short circuit currents in power systems. 14. Plot graphs for voltage and current surges when R is less than Z, (R ≥ X) 15. Test Insulators to determine their voltage distribution and string efficiency. 16. Draw a typical surge waveform. 17. Identify lightning arrester 18. Classify relays. Computer Hardware and Software II EEC 221 1. Demonstrate how to carry out computer maintenance 2. Repair common power supply issues. 3. Upgrade laptop components (RAM, SSDs, Wi-Fi cards). 4. Disassemble and repair a faulty motherboard. 5. Upgrade components in a laptop or | | power systems. 12. Determine the MVA fault level on | 50 | | surges when R is less than Z ₁ (R < Z ₂) 15. Test Insulators to determine their voltage distribution and strong efficiency. 16. Draw a typical surge waveform. 17. Identify lightning arrester 18. Classify relays Computer Hardware and Software II EEC 221 1. Depronstrate how to carry out computer maintenance 2. Repair common power supply issues. 3. Upgrade laptop components (RAM, SSDs, Wi-Fi cards). 4. Disassemble and repair a faulty motherboard. 5. Upgrade components in a laptop or | | 13. Draw typical waveforms of short circuit currents in power systems. | | | 16. Draw a typical surge waveform. 17. Identify lightning arrester 18. Classify relays 1. Demonstrate how to carry out computer maintenance 2. Repair common power supply issues. 3. Upgrade laptop components (RAM, SSDs, Wi-Fi cards). 4. Disassemble and repair a faulty motherboard. 5. Upgrade components in a laptop or | | surges when R is less than Z_0 (R< Z_0) 15. Test Insulators to determine their voltage distribution and string | | | computer maintenance 2. Repair common power supply issues. 3. Upgrade laptop components (RAM, SSDs, Wi-Fi cards). 4. Disassemble and repair a faulty motherboard. 5. Upgrade components in a laptop or | | 16. Draw a typical surge waveform.17. Identify lightning arrester | | | SSDs, Wi-Fi cards). 4. Disassemble and repair a faulty motherboard. 5. Upgrade components in a laptop or | _ | computer maintenance | | | motherboard. 5. Upgrade components in a laptop or | | | | | | | | | | desktop to improve performance. | | 5. Upgrade components in a laptop or desktop to improve performance. | | | 329 | | 329 | | - 6. Identify computer hardware components - 7. Identify AT and ATX f power packs - 8. Identify different computer interface cables - 9. Assemble a Computer Systeme - 10. Disassemble a Computer System - 11. Identify faults in the following: - Power supplies - System clocks - Memory Cards - Low battery - I/O ports, - Disk drives - Voltages - Keyboard - Monitors - Scratches on discs - 12. Rectify the following faults: - Overheating - Slow performance - Blue screen of Death - Internet connectivity issues - Malware Frozen screen Power issues Software crashes Peripheral device issues Ram (memory) issues Unable to boot Applications won't install CPU problems Data loss issues Dropped internet connection 13. Demonstrate indentation and comments in python 14. Demonstrate different types of python data 15. Demonstrate functions associated with numpy 16. Demonstrate the use of numpy library 17. Create table and classes 18. Manipulate the usual functions 19. Demonstrate the pandas library associated with numpy in python | | 20. Demonstrate how to build and manipulate a data frame | |-------------------------|---| | | 21. Identify the main algorithm of python 22. Demonstrate the launch of MATLAB | | | 23. Demonstrate MATLAB window as a calculator | | | 24. Demonstrate the following in MATLAB windows library | | | 25. Demonstrate the following data in MATLAB window | | | Integer (int)Float | | | StringBoolean | | Electronics III EEC 223 | Simulate an RLC circuit using MATLAB Investigate the effect of applying negative feedback on a distorted signal, input, | | | autust and immediance of acception | | | feedback on an amplifier. 2. Design a controller with simple control system configuration 3. Measure the frequency and amplitude of a | | | sinusoidal signal of an LC-Colpitts | | | oscillator. 4. Measure the frequency and amplitude of | |---------------------------------------|---| | | an output generated signal. 5. Carryout experiment to investigate the factors which affect the operation of LC Hartley oscillator and measure the frequency and amplitude of a generated | | | signal 6. Carryout an experiment to determine the factors which influence the operation of transistorized monostable, bistable and astable multivibrators. | | | 7. Carryout an experiment to determine both the input and output waveforms of a bridge rectifier and the effects of different filter circuits | | | 8. Build a circuit consisting of 555 multivibrator to determine 50% duty cycle square wave output signal 9. Sketch a block diagram representation of a converter with its components | | Electric Circuit Theory H | 10. Measure the input and output current and voltage levels of a converter and determine the frequency waveforms | | Electric Circuit Theory II
EEC 224 | Demonstrate the effect of the step-down transformer. Carryout Continuity Test on a Single Phase Transformer. | - 3. Carryout experiment on the turns ratio of a transformer - 4. Measurement of voltage and current. - 5. Carryout continuity test in three phase transformer. - 6. Demonstrate terminals of three phase transformer. - 7. Demonstrate Three phase star connected circuits. - 8. Demonstrate three phase delta connected circuits. - 9. Sketch the growth and decay curves in RC circuits. - 10. Sketch curves for growth and decay of current and voltage in RL circuits. - 11. Demonstrate three phase power measurement using two wattmeter method. - 12. Demonstrate starting method of threephase induction motors, Direct on-line starting method. - 13. Measure the electrical quantities of 3-phase induction motor. - 14. Determine three -phase Induction motor under load. - 15. Determine Torque Current Characteristic - 16. Connect the 3-phase dual speed squirrel | | cage induction motor'. 17. Carryout experiment on Induction motor 18. Determine the polarity of coupled
coils. 19. Find equivalent circuits for magnetically coupled coils. | |---|--| | Introduction to Industrial Automation EEC 225 | Identify: Home Automation Industrial Automation Identify the elements of the following: Home Automation Industrial Automation Identify the parts of a programmable logic controller Identify the types of Input/output devices Identify expansion modules and boards Connect and program different types of sensors and actuators. Connect different analog signals. | | WAII | 335 | - 8. Connect the following to the PLC: - On/Off sensors - Analog sensors - Switches - Actuators - Valves - Drives - 9. Turn on a motor or lamp using two buttons applying latching logic - 10. Turn off a motor or lamp using two buttons applying latching logic - 11. Make a program in ladder diagram - 12. Translate a ladder diagram program into electrical and logic circuits equivalent. - 13. Carry out basic Timer operations - 14. Carry out basic counter operations - Download programs to/from a CPU using PLC software - 6. Upload programs to/from a CPU using PLC software - 17. Interpret what each status light on a PLC or CPU module indicates. - 18. Interpret PLC error codes. - 19. Resolve common hardware and software issues. - 20. Identify components of robot based on configuration and application. - 21. Identify household items that can be characterized as mechatronic System. - 22. Identify components of the task above that help identify them as mechatronic Systems. - 23. Identify the characteristics of the following: - LVDT - Variable Capacitor. - Light Dependent Resistor - Resistance Temperature Detector - Thermistor. - Thermocouple. - 24. Identify different drives - 25. Program a basic HMI for a PLC system. #### **List of Minimum Resources** # LISTS OF EQUIPMENT, INSTRUMENTS AND TOOLS IN THE LABORATORIES, WORKSHOPS AND STUDIOS FOR ND ELECTRICAL & ELECTRONICS ENGINEERING TECHNOLOGY #### A. BASIC ELECTRICITY, MEASUREMENT AND INSTRUMENTATION LABORATORY | | DESCRIPTION OF ITEM | | |-----|------------------------------------|----------| | S/N | DESCRIPTION OF ITEM | QUANTITY | | 1. | Basic Electricity Kit/Trainer | 5 | | 2. | Electronics Trainer | 3 | | 3. | Experimental Trainer for AC and DC | 3 | | 4. | Analogue Multimeter | 5 | | 5. | Digital Multimeter | 5 | | 6. | Wheatstone Bridge | 5 | | 7. | Potentiometer | 5 | | 8. | Rheostats (Various ranges) | 10 | | 9. | Wattmeter | 5 | | 10. | Variac | 5 | | 11. | Ammeters (Various ranges) | | | | 0- 25A DC | 5 | | | 0- 2 A AC | 5 | | 12. | Milliammeter | | | | 0 1000mA DC | 5 | | | 0- 1000mA AC | 5 | | 13. | Micrometer | | | | 0- 1000mA DC | 5 | | | 10- 1000mA AC | 5 | | 14. | Voltmeter | | | | 0-500V DC | 5 | | | 0-500V AC | 5 | | 15. | Millivoltmeter | | | | 0- 1000mV DC | 5 | | 1.6 | | | |-----|-----------------------------|------------| | 16. | Ohmmeter | | | | 0- 5 ohms | 5 | | | 0- 25 ohms | 5 | | | 0- 50 ohms (Multirange) | 5 | | 17. | Galvanometer (triple range) | | | | 50-0-50mA | 5 | | | 500-0-500mA | 5 | | | 5-0-5 mA | 5 | | 18. | Fire extinguisher | | | 19. | First aid box | V i | | 20. | Safety bucket | 1 | | 21. | Safety posters | 6 | ## B. ELECTRONICS/TECOMMUNICATIONS LABORATORY | S/N | DESCRIPTION OF ITEM | QUANTITY | |-----|---|----------| | 1. | Semiconductor Kit/Trainer | 5 | | 2. | Digital Trainer/Logic Tutor | 5 | | 3. | Operational Amplifier (Op Amp) | 5 | | 4. | Arduino Uno kits | 5 | | 5. | Function Generator | 5 | | 6. | Frequency Counter | 5 | | 7. | Electronics Trainer | 5 | | 8. | Communication Trainer Kit | 5 | | 9. | AM/FM Transmitter and Receiver | 5 | | 10. | Transistor Amplifier Trainer/Demonstrator | 5 | | 11. | Circuit Construction Deck/Trainer | 10 | | 12. | Microcontroller | 5 | | 13. | Microcontroller Trainer | 5 | | | 339 | | | | Function Congretor | 5 | |------|------------------------------|----| | | Function Generator | | | | Frequency Counter | 5 | | 1 | | | | | i. 50MHz | 5 | | | ii. 100MHz | 5 | | | . Signal generators (AF, RF) | 5 | | 1 | | 5 | | | . Transistor Tester | 5 | | 2 | | 5 | | 2 | | 5 | | 2 | * | 5 | | 2 | | 5 | | 2 | | 5 | | 2 | | 10 | | 2 | . RLC bridge | 5 | | 2 | . Optocoupler | 5 | | 2 | | 5 | | 2 | . Wave guides | 5 | | 3 | Fire extinguisher | 1 | | 3 | | 1 | | 3 | | 1 | | 3 | | 6 | | | Mr Bo. | | | WALL | 340 | | #### C. POWER & MACHINES LABORATORY | C. TOWER & MACHINES LABORATORY | | | | | |--------------------------------|--|-----------------|--|--| | ELECTRICAL POWER SECTION | | | | | | S/N | DESCRIPTION OF ITEM | NUMBER REQUIRED | | | | 1. | Power Demonstration Units | 3 | | | | 2. | Stabilizer power units | 3 | | | | 3. | Power factor meter | | | | | 4. | Wattmeter: | | | | | | - Single | 5 | | | | | - 3 Phase | 5 | | | | 5. | Energy meter: | | | | | | - Single | 5 | | | | | - 3 Phase | 5 | | | | 6. | Digital Multimeter | 5 | | | | 7. | Analogue Multimer | 5 | | | | 8. | Clip-on ammeter | 5 | | | | 9. | Transmission and Distribution Lines Model | 3 | | | | 10. | Insulation Resistance Meter (Megger testers) | 3 | | | | 11. | Tachometer (mechanical) | 5 | | | | 12. | Stroboscope | 5 | | | | 13. | Digital phase meter | 5 | | | | 14. | Phase sequence meter/indicator | 5 | | | | MACHINES SECTION | | | | | | S/N | DESCRIPTION OF ITEM | NUMBER REQUIRED | | | | 15. | Motor-Generator Sets for Laboratory Use (DC supply | 1 | | | | • | source | | | | | 16. | Machine Control Panel Trainer | 1 | | | | 17. | Tachogenerator | 5 | | | | 18. | Synchronous Motor | 5 | | | | 19. | DC motors: | | |-----|---|----| | | - Series | 3 | | | - Shunt | 3 | | | - Compound | 3 | | 20. | DC Generators: | | | | - Self excited | 3 | | | - Separately excited | 3 | | | - Shunt | | | | - Compound | 3 | | | - Starters | 3) | | 21. | A. C. Motors: | | | | - Single phase induction motors (assorted) | 3 | | | - 3 phase induction motor | 3 | | | - Dynamometer set | 3 | | | - Direct online starters | 3 | | | - Star-delta starters | 3 | | 22. | Transformers: | | | | - Power Transformer (single phase) | 5 | | | - Power Transformer (3-phase) | 5 | | | -Transformer Trainer (Single Phase) | 2 | | | -Transformer Trainer (Three Phase) | 2 | | 23. | Variable resistance load | 3 | | 24. | Variable inductive load | 3 | | 25. | Variable capacitive load | 3 | | 26. | Single Phase Capacitor Start Capacitor Run Motor" | 5 | | 27. | Compound motor relay | 5 | | 28. | Flux Meter | 5 | | 29. | PID Controller | 5 | | 20 | DI . H | | |------|--|----| | 30. | Plotter | 2 | | 31. | Temperature Sensors | 3 | | 32. | Thermometer | 5 | | 33. | PLC device with training board equipped with manual switches for digital inputs and adjuster voltage/current source for analog inputs, sensors, audio switches and actuator for training | 3 | | 24 | | | | 34. | PLC programming software | 5) | | 35. | SCADA software | 2 | | 36. | Samples of motor name plate | 10 | | 37. | Fire extinguisher | 1 | | 38. | First aid box | 1 | | 39. | Safety bucket | 1 | | 40. | Safety posters | 6 | | | | | | WIIO | 343 | | ### LISTS OF EQUIPMENT, INSTRUMENTS AND TOOLS IN THE WORKSHOPS #### D. ELECTRICAL INSTALLATION AND MAINTENANCE WORKSHOP | S/N | DESCRIPTION OF ITEM | QUANTITY | |-----|---|----------| | 1. | Wiring boards (0.7m x 0.7m) | 40 | | 2. | Pedestal drill | 1 | | | | 1 | | 3. | Hand drill | 3 | | 4. | Electrician tool kits | 10 | | 5. | Conduit bending machine, and accessories (for Metal) | 3 | | 6. | Conduit Bending (Spring Type – for PVC) | 20 | | 7. | Bench vices | 5 | | 8. | Earth leakage circuit breakers (ELCB) | 6 | | 9. | Cable jointing kits for: | | | | - Soldering pot & ladle | 2 | | | - Soldering iron | 40 | | | - Modern Raychem joints | 3 | | | - Blowlamp | 3 | | 10. | Earth rods and accessories | 5 | | 11. | Simulated wall for vertical conduit and metal cable installations | 3 | | 12. | Various sizes of PVC cables | 5 | | 13. | MICC cables and accessories | 5 | | 14. | Underground cables and accessories | 5 | | 15. | Various consumables (lamp holders, sockets, etc) | Lot | | 16. | Insulation Resistance Meter (Megger Tester) | 5 | | 17. | Overhead line materials: | | | | - Safety belts | 10 | | | - Conductor joint kits | 5 | | | - Earthing kits | 3 | | 18.
19.
20.
21.
22.
23.
24. | Inverter Charge Controller Electric cookers, fans, iron etc. (used ones) Motors (assorted) used ones Generators (assorted) used | 2
2
3 each | |---|---|------------------| | 21.
22.
23. | Charge Controller Electric cookers, fans, iron etc. (used ones) Motors (assorted) used ones Generators (assorted) used | | | 21.
22.
23. | Electric cookers, fans, iron etc. (used ones) Motors (assorted) used ones Generators (assorted) used | | | 23. | Motors (assorted) used ones Generators (assorted) used | 3 | | | Generators (assorted) used | | | 24. | , , | 3
 | | Starter: | V | | | - Direct online | 3 | | | - Star delta | 3 | | | -Auto Transformer | 2 | | 25. | Coil winding equipment (Manual) | 1 | | 26. | | 1 | | 27. | Refrigerator (used) | 2 | | 28. | | 2 | | 29. | Satellite Decoder | 2 | | 30. | Battery charging facilities | | | | - Charger (trickle, constant current and constant voltage charging | 1 | | | system) | | | | - Battery | 1 | | | - Electrolytes | 3 | | | - Hydrometer | 3 | | 31. | Thermo-setting and thermo-plastic | 3 | | 32. | Multimeter | 5 | | | | 3 | | 33. | Lata Bop toster | | | 33.
34. | | 1 | | | Fire extinguisher | | | 34.
35. | Fire extinguisher First aid box Safety bucket | | #### E. ELECTRONIC WORKSHOP | S/N | DESCRIPTION OF ITEM | QUANTITY | |-----|---|----------| | 1. | Electronic technician tool kits | 10 | | 2. | Electronic Discrete Components: | Assorted | | | (Resistor, Capacitors, Inductors, diode, Zener diodes, Transistor | | | | (BJT, FET, JFET, MOSFET), Thyristor, SCR, Multivibrator, | | | | etc.) | | | 3. | Soldering Station | 5 | | 4. | Soldering iron (assorted) | 20 | | 5. | Multimeter | 10 | | 6. | I.C. Tester | 5 | | 7. | Transistor tester | 5 | | 8. | Galvanometer | 5 | | 9. | Radio Set (used one) | 5 | | 10. | TV Sets (Plasma, LED) – used one | 5 | | 11. | Amplifiers | 5 | | 12. | Oscilloscope | 1 | | 13. | DC Power Supply | 3 | | 14. | Phone (Keyboard) (used) | 5 | | 15. | Android phone (used) | 5 | | 16. | Phones Repair Kits | 5 | | 17. | Microphones | 3 | | 18. | Transceivers (walkie talkie) | 5 | | 19. | DC/DVD Player | 5 | | 20. | Bread Board | 30 | | 21. | Vero Board | 30 | | 22, | Fire exanguisher | 1 | | 23. | First aid box | 1 | | 24. | Safety bucket | 1 | | 25. | Safety posters | 6 | #### F. MECHANICAL WORKSHOP | | V INECESSION (V GILLBIRG) | | |-----|--|----------| | S/N | DESCRIPTION OF ITEM | QUANTITY | | 1. | Pillar drilling machine | 3 | | 2. | Bench drill machine | 3 | | 3. | Hand drill machine | 6 | | 4. | Drilling Machine Accessories | 1 | | | (i) drill sets in boxes | 4 | | | (ii) drills 1/16"x 1/2" | 4 | | | (iii) drills 1mm | 4 | | | (iv) Drill chuck and keys | 4 | | 5. | Shaping Machine | 1 | | 6. | Grinding Machine | 2 | | 7. | Gabro type guillotine/Notches 2M | 1 | | 8. | Lathe Machine | 1 | | 9. | Riveting machine | 1 | | 10. | Power hacksaw (metal cutting machine) with accessories | 1 unit | | 11. | Saw | Assorted | | 12. | Welding/Fabrication Equipment | | | | i. Electric Unit with accessories | 2 | | | ii. Gas Unit with accessories | 2 | | | a. Welding beds | 2 | | | b. Brazing equipment | 2 | | | c. Brazing rods | 2 | | | d. Soldering rods | 2 | | 13. | V 7. E CC | 10 | | 14. | Apron (leather) | 10 | | 15. | Anvil | 2 | | | | | | | Welding Booth | 3 | |-------|---------------------------------------|----------| | 17. | Welding Marking out tools | Assorted | | 18. | Welding head shield | 4 | | 19. | Welding joint teaching aids (diagram) | Assorted | | 20. | Pliers | Assorted | | 21. | Punches | Assorted | | 22. | Screw Driver | Assorted | | 23. | Spanners | Assorted | | 24. | Files | Assorted | | 25. | Boring tools | Assorted | | 26. | Micrometers Manual | 4 | | 27. | Micrometers Digital | 4 | | 28. | Rules | Assorted | | 29. | Vernier Calipers | Assorted | | 30. | Gauges | Assorted | | 31. | Hammers | Assorted | | 32. | Mallets | Assorted | | 33. | Stock and dies | 1 set | | 34. | Hand Machine Reamers | 1 | | 35. | Clamps | Assorted | | 36. | Tap and Wrenches | 2 | | 37. | Chisels | Assorted | | 38. | Scrapers | Assorted | | 39. | Fire extinguisher | 1 | | 40. | | 1 | | 41. | Şafety bucket | 1 | | 42. | Safety posters | 6 | | WAILO | 348 | | ### LISTS OF EQUIPMENT, INSTRUMENTS AND TOOLS IN THE STUDIOS #### G. DRAWING STUDIO | | DRIVING STODIO | | |-----|------------------------------------|----------| | S/N | DESCRIPTION OF ITEM | QUANTITY | | 1. | Drawing tables | 40 | | 2. | Drawing/drafting stools | 40 | | 3. | Adjustable set squares | 4 | | 4. | Desk sharpeners | 4 | | 5. | Scale rule (triangular and flat) | 30 | | 6. | White board rulers | ** | | 7. | White board Tee-squares | 4 | | 8. | White board set-squares (45 & 60) | 4 | | 9. | White board compasses | 4 | | 10. | White board protractor | 4 | | 11. | French curve | 4 | | 12. | Letter and number stencils | 10 | | 13. | Storage cabinet for drawing papers | 1 | ### H. COMPUTER STUDIO/SOFTWARE LABORATORY | S/N | DESCRIPTION OF ITEMS | QUANTITY | |-----|--|----------| | 1. | Computer systems | 30 | | 2. | Solar Power Installation | 1 | | 3. | Internet Connectivity | 1 | | 4. | Printer (All in one) | 1 | | 5. | Multimedia Projector | 1 | | 6. | Projector screen | 1 | | 7. | Software packages | 1 each | | | - Operating system (Windows, Linux, Macintosh etc) | | | | - Network operating systems | | |------|--|------------| | | - Simulation software (Multisim, Proteus Design, | | | | MATLAB, Python, Electronic workbench, Packet | | | | Tracer, Scilab, Octave etc) | | | | - PLC and SCADA Software | | | | - Application suites (MS Office suite etc) | | | | - Integrated Development Environment (MS Visual | | | | studio, NetBeans etc) | | | | - Word processing | | | | - Spreadsheet | () | | | - Statistical packages | | | | - Graphics packages | | | | - Educational packages | | | 8. | Troubleshoot software packages | Varieties | | 9. | Fire extinguisher | 1 | | 10 | First aid box | 1 | | 11 | Safety bucket | 1 | | 12 | Safety posters | 6 | | | | | | WAIL | 350 | | ## LIST OF PARTICIPANTS 2022 REVIEW WORKSHOP | S/NO. | NAMES | ADDRESS | PHONE
NO. | EMAIL ADDRESS | |-------|-----------------------------|--|--------------|------------------------------------| | 1 | Engr. Aminu Shehu Sani | Abdu Gusau Polytechnic | - | aminday09@Gmail.com | | | COREN REP. | T/Mafara, Zamfara State | | | | 2 | Engr. Dr. Hajara Abdulkarim | Jigawa State Polytechnic. | - | hajabdulkarim@yahoo.com | | | Aliyu | Dutse | | | | 3 | Engr. Dr. Aliyu Hamza Sule | Hassan Usman Katsina
Polytechnic, Katsina | | ahsulem1968@gmail.com | | 4 | Engr. Olumayowa A. Idowu | Nigerian Television Authority, Abeokuta | _ | olumayor2@gmail.com | | 5 | Engr. Dr. Surajo A. Musa | Federal Polytechnic, Daura,
Katsina State | - | surajo762@fedopolydaura.edu
.ng | | | NBTE STAFF | | | | | 6 | Prof. Idris M. Bugaje | Executive Secretary, NBTE, Kaduna | - | es@nbte.gov.ng | | 7 | Mal. Ibrahim Bashir Bello | Special Assistant to ES,
NBTE, Kaduna | - | saes@nbte.gov.ng | | 8 | Mal. Musa M. Isgogo | Director, Curriculum Dev.,
NBTE Kaduna | - | dugujiisgogo@gmail.com | | 9 | Bala Danladi Akut | NBTE Kaduna | - | Baladanladi2000@yahoo.ca | | 10 | Engr. Kabir Salisu Danja | NBTE Kaduna | - | ksdanja@yahoo.com | | 11 | Jamila Isah | NBTE Kaduna | - | isajamila10@gmail.com | | | SECRETARIAT | | | | | 12 | Dije Ali | NBTE Kaduna | - | dijeali_2006@yahoo.com | | 13 | Baita Mohammed | NBTE Kaduna | - | mohammadbaita2@gmail.com | ## LIST OF PARTICIPANTS FOR 2024 REVIEW WORKSHOP | S/NO. | NAMES | ADDRESS | PHONE NO. | EMAIL ADDRESS | |-------|------------------------------------|--|------------|-------------------------------| | 1 | Jens Christian Moller | ERYK | - | icm@Eryk.com | | 2 | Aleksander Trzeciak | ERYK | - | at@eryk.com | | 3 | Engr Francis Temitope
Ogunlowo | IIT, Lagos | - | Yogunlowo@iit.edu.ng | | 4 | Chukwudi Johnpaul Okolo | ERYK | - 4() | cjo@eryk.com | | 5 | Engr Aliyu Tukur | HUK Poly Katsina | - 111 | aliyutukur74@gmail.com | | 6 | Engr. Yunana Markus | COREN Representative | -// | yunanamk@gmail.com | | 7 | Khalil Yusuf Adamu | NAPTIN | -) | Yuskhalil@yahoo.com | | | NBTE STAFF | | • | | | 6 | Prof. Idris M. Bugaje | Executive Secretary, NBTE, Kaduna | - | es@nbte.gov.ng | | 7 | Prof. Diya'udeen Basheer
Hassan | Special Assistant to ES,
NBTE, Kaduna | - | saes@nbte.gov.ng | | 8 | Dr. Musa Hatim Koko | Director, Curriculum
Dev. NBTE Kaduna | - | hatimlion@gmail.com | | 10 | Engr. Kabir Salisu Danja | NBTE Kaduna | - | ksdanja@yahoo.com | | 11 | Muhammad Umar Auna | NBTE Kaduna | - | muhammadauna.mu@gmail.com | | | SECRETARIAT O | | | | | 12 | Kirki A. Dalhat | NBTE, Kaduna | - | dalhatabubakarkirki@gmail.com | | 13 | Abdulhamid Usman | NBTE Kaduna | - | hamidco97@gmail.com |