NATIONAL BOARD FOR TECHNICAL EDUCATION PLOT 'B' BIDA ROAD, P. M. B. 2239, KADUNA

CURRICULUM AND COURSE SPECIFICATION FOR

HIGHER NATIONAL DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY

(PHYSICS WITH ELECTRONICS OPTION)

JUNE 2021

GENERAL INFORMATION ON HND SCIENCE LABORATORY TECHNOLOGY

(PHYSICS WITH ELECTRONICS OPTION) PROGRAMME

1.0 TITLE OF THE PROGRAMME: The title of the programme is Higher National Diploma in Science Laboratory Technology (Physics with Electronics Option)

2.0 GOAL AND OBJECTIVES OF THE PROGRAMME

Goal:

This programme is designed to produce graduates with knowledge and skills in practical application of Physics, Electronics and Instrumentation.

Objectives:

On completion of the Programme, the graduates should be able to:

- 1) Manage Physics/Electronics laboratory;
- 2) Use the concept of Physics to explain the behavior of particles at atomic and sub-atomic levels;
- 3) Apply the concept of wave nature of light in optical systems;
- 4) Apply principles of measurement in electrical/electronic systems;
- 5) Carry out solar system installations;
- 6) Apply principles of Acoustics in the design of buildings and appliances;
- 7) Predict reliability of systems;
- 8) Select materials and electronic components for design, construction and fabrication purposes;
- 9) Analyze and troubleshoot electrical/electronic circuits;
- 10) Develop programmes for the construction of simple automatic systems;
- 11) Apply knowledge of electromagnetism in electrical appliances and telecommunication systems; and
- 12) Relate forces to motion and stability.

3.0 ENTRY REQUIREMENTS

The general entry requirements for the HND programme include:

- a. National Diploma (ND) in Science Laboratory Technology with a minimum of lower credit pass (CGPA of 2.50 and above) obtained from an NBTE accredited programme plus a minimum of one year Post-ND cognate work experience in Science Laboratory Technology
- b. In exceptional cases, the ND diplomates with a pass grade (CGPA 2.0 2.49) in the ND examination that had two or more years of cognate work experience, may be considered for admission into the programme. However, the number of such candidates should not be more than 10% of the total student intake in each class.

4.0 STAFFING REQUIREMENT

4.1 Headship of the Department

The HOD should be at least a Senior Lecturer who has a minimum of second degree in Physics or Electronics. S/he should have at least 10 years cognate experience and must be registered with the relevant professional body.

4.2 Core Teaching Staff

At the point of mounting the programme, there should be a minimum of four Lecturers who should be of the rank of Lecturer II and above, with minimum qualification of first degrees (BSc or B.Tech) in Physics, Electronics or Science Laboratory Technology (Physics).

4.3 Technical Staff

These are technically qualified staff not involved in direct lecturing/instructing, but who provide vital and indispensable services in laboratories, workshops, studios, use of machinery and equipment, farms and other field facilities

4.3.1 Technologist

Technologist should possess HND or equivalent qualification in Physics/Electronics.

4.3.2 Technician

Technicians should possess ND or equivalent qualification in Science Laboratory Technology.

4.3.3 Assistant/Attendants

Assistants/attendants should be attached to each facility to ensure its proper upkeep. The Assistants should possess SSCE (Science-based), while the Attendants should possess Junior Secondary School Certificate.

5.0 CAREER/ACADEMIC PROSPECTS

On successful completion of the programme, the graduands may be employable as technologists in:

- a) Academic Laboratories;
- b) Oil and Gas Industry;
- c) Manufacturing Industry;
- d) Telecommunication Industry;
- e) Research Laboratories;
- f) Laser-Optics Industry;
- g) Nuclear Power Plants;
- h) Textile/Industrial Design;
- i) Radiation Protection;
- j) Gas Power Plants;
- k) Solar Photovoltaic and Solar Thermal Industry;
- 1) Laboratories/Medical Instruments Maintenance;
- m) Design and Construction of Laboratories for Institutions, Industries etc;
- n) Vending of Laboratory Instruments;
- o) Recording and Transmission Studios;
- p) Meteorological Stations;
- q) Environmental Science Facilities; and
- r) Medical Imaging Facilities.

6.0 **DURATION OF PROGRAMME**

The duration of the programme is two academic sessions consisting of four semesters of 17 weeks each.

7.0 CURRICULUM

7.1 The curriculum of the programme consists of four main components. These are:

- a. General Studies/Education
- b. Foundation Courses.
- c. Professional Courses
- d. Project.

7.2 The General Education component shall include courses in:

English Language, Entrepreneurship and Citizenship Education. The General Education component shall account for not more than 10-15% of the total contact hours for the programme.

Foundation courses include courses in Mathematics and Computer Science. The number of hours for the courses may account for about 10-15% of the total contact hours.

Professional courses are core courses of the programme that give the student the theory and professional skills he/she needs to practice his/her field of calling at the Technologist level. These may account for between 70-80% of the contact hours.

8.0 CURRICULUM STRUCTURE

The structure of the programme consists of four semesters of classroom, laboratory and workshop activities in the institution. Each semester shall be of 17 weeks duration made up as follows:

- a. 15 weeks of teaching, i.e. instruction, practical exercise, quizzes, test, etc; and
- b. 2 weeks for examinations and registration.

9.0 ACCREDITATION

The National Board for Technical Education shall accredit the programme before the diplomates can be awarded the Higher National Diploma certificates. Details about the process of accrediting a programme for the award of the Higher National Diploma are available from the office of the Executive Secretary, National Board for Technical Education, Plot "B", Bida Road, P.M.B. 2239, Kaduna, Nigeria.

10.0 AWARD OF HIGHER NATIONAL DIPLOMA

- 10.1 Conditions for the award of Higher National Diploma include the following:
 - a. Satisfactory performance in all prescribed course work, which may include class work, tests, quizzes.
 - b. Workshop practice, laboratory work and fieldwork.
 - c. Satisfactory performance at all semester examinations.
 - d. Satisfactory completion of final year project work.

Normally, for all courses including final year project work, continuous assessment contributes 40%, while semester examinations and project reports are weighted 60% to make a total of 100%. For Seminar presentation, Continuous assessment contributes 30 %, while Seminar reports are weighted 70 % to make a total of 100 %.

- 10.2 Higher National Diploma should be awarded in four classes:
 - a. Distinction CGPA of 3.50 and above
 - b. Upper Credit CGPA of 3.0 3.49
 - c. Lower Credit CGPA of 2.50 2.99
 - d. Pass CGPA of 2.00 2.49.

MARKED RANGE	LETTER GRADE	WEIGHTING
75 % and above	А	4.00
70 % - 74 %	AB	3.50
65 % - 69 %	В	3.25
60 % - 64 %	BC	3.00
55 % - 59 %	С	2.75
50% - 54 %	CD	2.50
45 % - 49 %	D	2.25
40 % - 44 %	E	2.00
Below 40 %	F	0.0

10.3 Grading of Courses: Courses shall be graded as follows:

11.0 GUIDANCE NOTES FOR TEACHERS

- 11.1 The new curriculum is drawn in unit courses. This is in keeping with the provisions of the National Policy on Education which stress the need to introduce the semester credit units which will enable a student who so wishes to transfer the units already completed in an institution of similar standard from which he/she is transferring.
- 11.2 In designing the units, the principle of the modular system by product has been adopted, and each of the professional modules, when completed provides the student with technologist operative skills, which can be used for employment purposes or self-reliance.
- 11.3 As the success of the credit unit system depends on the articulation of programmes between the institutions and industry, the curriculum content has been written in behavioral objectives, so that it is clear to all the expected performance of the student who successfully completed some of the courses or the diplomates of the programme. This is slight departure in the presentation of the performance based curriculum which requires the conditions under which the performance is expected to be carried out and the criteria for the acceptable levels of performance. It is a deliberate attempt to further involve the staff of the department teaching the programme to write their own curriculum stating the conditions existing in their institution under which performance can take place and to follow that with the criteria for determining an acceptance level of performance.

The Academic Board of the institution may vet departmental submission on the final curriculum. Our aim is to continue to see to it that a solid internal evaluation system exists in each institution for ensuring minimum standard and quality of education in the programmes offered throughout the Polytechnic system.

11.4 The teaching of the theory and practical work should, as much as possible, be integrated. Practical exercises, especially those in professional courses and laboratory work should not be taught in isolation from the theory. For each course, there should be a balance of theory to practical in the ratio of 50:50 or 60:40 or the reverse. In each semester, the practical components for all courses that have practical works have been put into a single practical course with separate course code and title. Thus, as the practical works are carried out alongside the theory, the continuous assessment (CA) for each practical work of all applicable courses will be compiled under each practical course in each semester. Furthermore, there will be practical tests and semester examination for each practical course in each semester.

12.0 PRACTICAL LOGBOOK

A personal Log-book to be kept by each student shall contain all the day-to-day, weekly summary, and semester summary of all the practical activities from day one to the end of the programme. This is to be checked, marked, endorsed and recorded by the lecturers/technologists concerned at the end of every week.

13.0 FINAL YEAR PROJECT

Final year students in this programme are expected to carry out a project work. This could be on individual basis or group work of not more than two students per group, but reporting must be undertaken individually. The project should, as much as possible incorporate basic elements of design, drawing and complete fabrication of a marketable item or something that can be put to use. Project reports should be well presented and should be properly supervised.

The departments should make their own arrangement of schedules for project work.

HND I SEMESTER 1

S/N	COURSE	COURSE TITLE	L	Р	CU	СН	Prerequisite
	CODE						
1	COM 301	Computer Programming	2	-	2	2	
2	GLT 301	Laboratory Management	1	-	2	1	
3	GLT 302	Instrumentation (General)	2	р	2	2	
4	PYE 311	Modern Physics	2	Р	2	2	
5	PYE 312	Material Science	2	Р	2	2	
6	PYE 313	Electric Circuit Theory	2	Р	2	2	
7	PYE 314	Electromagnetism I	2	Р	2	2	
8	PYE 315	Introduction to Solid State Physics	1	-	2	1	
9	PYE 316	Physics/Electronics Practical I	-	10	5	10	
10	MTH 311	Advanced Algebra	1	-	1	1	
11	GNS 301	Use of English III	1	-	1	1	
		TOTAL	16	10	23	26	

HND I SEMESTER 2

S/N	COURSE CODE	COURSE TITLE	L	Р	CU	СН	Prerequisite
1	PYE 321	Thermodynamics	2	-	2	2	
2	PYE 322	Electromagnetism II	2	Р	2	2	PYE 314
3	PYE 323	Analogue Electronics	2	Р	2	2	
4	PYE 324	Telecommunication Principles	2	Р	2	2	
5	PYE 325	Physical Optics	2	Р	2	2	
6	PYE 326	Quantum Mechanics	2	-	2	2	
7	PYE 327	Physics/Electronics Practical II	-	8	4	8	PYE 316
8	MTH 312	Advanced Calculus	1	-	1	1	MTH 311
9	GNS 402	Literary appreciation and Oral Composition	1	-	1	1	
			14	8	18	22	

HND II SEMESTER 1

S/N	COURSE	COURSE TITLE	L	Р	CU	СН	Prerequisite
	CODE						
1	PYE 411	Advanced Equipment Maintenance and Repairs	2	Р	2	2	
2	PYE 412	Instrumentation	2	Р	2	2	
3	PYE 413	Radio Communication Principles	2	-	2	2	
4	PYE 414	Computational Physics	1	-	1	1	
5	PYE 415	Digital Electronics	2	Р	2	2	
6	PYE 416	Applied Solar Energy	2	Р	2	2	
7	PYE 417	Acoustics	1	-	1	1	
8	PYE 418	Physics/Electronics Practical III	-	8	4	8	
			12	8	16	20	

HND II SEMESTER 2

S/N	COURSE	COURSE TITLE	L	Р	CU	СН	Prerequisite
	CODE						
1	PYE 421	Control Systems	2	Р	2	2	
2	PYE 422	Microelectronic Systems	2	Р	2	2	
3	PYE 423	Equipment Reliability	2	-	2	2	
4	PYE 424	Physics/Electronics Practical IV	-	4	2	4	
5	PYE 425	Seminar			2		
6	PYE 426	Project			4		
			6	4	14	10	

HND I SEMESTER 1

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Modern Physics	Code: PYE 311	Contact Hours: 4 Hours
Credit Unit: 2 Units	Pre-requisite	Theoretical: 2 hours/week
Year: 1	Semester: First	Practical: 2 hours/week

Course main Goal: This course is designed to provide students with the basic knowledge of the principle and experimental facts underlying quantum mechanics and atomic theory.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Comprehend the experimental basis of quantum theory
- 2.0 Interpret the basis of the atomic model
- 3.0 Appreciate the wave particle nature of matter
- 4.0 Use spectroscopy in the analysis of atomic transition
- 5.0 Comprehend the use of microscopy in Nano science
- 6.0 Appreciate the nature and application of X-rays
- 7.0 Appreciate the general features of nuclear reactions

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Modern Physics			Code: PYE 311			Credit units: 2 units	
Course Specification: Theoretical contents			Practical Code: PYE 316			Credit Hour: 2 Hours	
1.0 General Objective 1.0 Comprehend the exp			rimental basis of quantu	um theory			
Week	Specific Learning	Teacher's	Resources	Specific Learning	Teacher's	Evaluation	
	Outcomes	Activities		Outcomes	Activities		
1.1 Explain the Lecture to		Pasco radiation	Determine radiation	Students sho	ald Direct the students		
	blackbody radiation.	Discuss, with	sensor, Pasco	from objects at	determine	to explain the	

I						
1.	2 Account for the	examples the	thermal radiation	certain temperatures,	thermal	principles of black
	empirical data on	experimental	cube, three	and take	radiation rates	body radiation and
	blackbody radiation.	basis of quantum	multimeters,	measurements	from different	its classical theory.
1.	3 Describe the	theory.	Window glass.	testing the Stefan-	surfaces and	
	resemblance of the		Stefan-Boltzmann	Boltzmann law in	take	
	emission curves with	Describe	lamp, Power supply	high- and low-	measurements	
	those of the Maxwell	resemblance of	and meter stick	temperature	testing the	Ask the students to
	speed distribution.	the emission		ranges; measure the	Stefan-	explain the
1.4	4 Explain the Rayleigh	curves with those		inverse-square law	Boltzmann law	Rayleigh – Jeans
	– Jeans theory	of the Maxwell		for thermal radiation	in high- and	theory and the
1.	5 State the reason(s)	speed			low-	reason(s) for the
	for the failure of the	distribution and			temperature	failure of the
	Rayleigh-Jeans	the Rayleigh –			ranges; measure	Rayleigh-Jeans
	approach (the	Jeans theory			the inverse-	approach (the
	ultraviolet				square law for	ultraviolet
	catastrophe).	Explain the			thermal	catastrophe).
1.	6 Explain the Wien's	reason(s) for the			radiation	1 /
	radiation law.	failure of the				
1.	7 Describe classical	Rayleigh-Jeans				
	theory of black	approach (the				
	body.	ultraviolet				
1.	8 Paraphrase Planck's	catastrophe).				
	quantum theory of	1 /				
	radiation.	Explain classical				
		theory of black				
		body.				
		Explain Planck's				
		quantum theory				
		of radiation.				
Objectives	2.0 Interpret the atomic	model				
2.	1 Explain the		Diffraction grating	Determine and	Students should	Instruct the students
	Rutherford's nuclear		(transmission type),	observe absorption,	determine and	to describe the
	model of the atom.		meter stick; optical	emission and	observe	different models of
2.	2 Explain Rutherford's		rails (2); quantitative	transmission spectra	absorption,	the atom.

scattering and its		spectroscopes (4);	of a variety of	emission and
conclusions.		LED circuit board;	sources;	transmission
2.3 State the limitations	Lecture students	adjustable voltage dc		spectra of a
of Rutherford's	to discuss the	power supply; demo		variety of
model of atom,	various atomic	AS-13 flame test kit;		sources,
2.4 Explain [i] electron	models with	Spectronic 200		
orbits, and [ii] atomic	relevant class	spectrometer; 100	Evaluate the energy-	Evaluate the
spectra.	examples.	mL graduated	frequency relation to	energy-
2.5 Explain the Bohr	1	cylinders (2);	determine Planck's	frequency
model of atom.		concentrated food	constant;	relation to
2.6 Explain Bohr's model		colors in dropper	,	determine
energy, radius and		bottles (red, yellow,		Planck's
velocity.		green, blue); and		constant;
2.7 Explain quantization		incandescent light		,
in the Bohr model.		bulb fixture		Determine the
2.8 Explain emission of				wavelengths of
radiation in Bohr's			Determine the	light expected
theory.			wavelengths and	for specific
2.9 Explain the failures			energies of some of	electronic
of the Bohr model.			the electronic	transitions of
2.10Explain Einstein			transitions of the	hydrogen.
theory of			Balmer series for	nyurogen.
photoelectric effect.			hydrogen.	Note:
2.11Derive an expression			nyurogen.	[i] Supervise
of work function for				the
photoelectric effect. 2.12Account for the				practical. [ii]
				Group the
Compton effect and				students for the
Compton scattering.				purpose of the
				practical. [iii]
				Demonstrate the
				experiment
				for the students
				before allowing

					them to work in	
					groups.	
	jectives 3.0 Appreciate	the wave particle r	nature of matter			
3.	1 Describe Wave and	Explain the wave	-Photoelectric	Demonstrate that	Demonstrate	Ask students to
	Particles.	particle nature of	apparatus with a	light can behave as a	that light	differentiate
3.	2 Explain the concept	matter with	phototube, Light	particle and	behaves like a	between the
	of a matter wave.	relevant class	Emitting Diodes	determine	particle when	behavior of wave
3.	3 Explain wave-	examples.	(LEDs) of several	Planck's constant.	it interacts with	and particle matter.
	particle duality: light		colors, two digital		matter, such as	
3.	4 Explain De-Broglie	- De-Broglie	meters,		electrons on a	
	Hypothesis	Hypothesis	Photocathode		metal surface.	Direct the students
3.	5 Explain the concept	-the concept of a	/ammeter apparatus,			to explain
	of a matter wave.	matter wave.	mercury arc lamp			photoelectric effect
3.	6 Write down the de		and power supply,		Estimate the	and Einstein theory
	Broglie equation	- Davisson-	red laser, green laser		value of	of photoelectric
	relating momentum	Germer	pointer, digital		Planck's	effect and
	to wave number (or	experiment and	voltmeter and color		constant h.	photoelectric effect,
	to wavelength or	how it confirmed	filters			using Wien's black
	frequency).	the wave nature				body.
3.	7 Account for the	of electrons.				
	Davisson-Germer	1 0 1 2				
	experiment and how it confirmed the	- de Broglie's				
	wave nature of	explanation of Bohr's orbital				
	electrons.	angular				
2	8 Describe de	momentum				Ask the students to
3.	Broglie's	quantization				explain
	explanation of	postulate as a				photoelectric effect
	Bohr's orbital	result of a				and Einstein theory
	angular momentum	standing electron				of photoelectric
	quantization	wave and				effect and
	postulate as a result	Complementarity				photoelectric effect,
	of a standing	Principle.	Lecture notes,			using Wien's black
	electron wave.	i interpre.	reference texts and			body.

3.9 Explain	Explain	materials.			
Complementarity	photoelectric				Direct students to
Principle.	effect and				derive expression
3.10 Describe	Einstein theory				work functions for
photoelectric effect.	5				photoelectric effect,
3.11 Explain Einstein	effect, using				account for the
theory of	Wien's black				Compton effect and
photoelectric effect.					Compton scattering
3.12 Account for					and
Einstein's					define Heisenberg
explanation of the					uncertainty
photoelectric effect,	Drive expression				principle
using Wien's black	of work				1 1
body.	functions for				
3.13 Derive expression	photoelectric				
work functions for	effect, account				
photoelectric effect.	for the Compton				
3.14 Account for the	effect and				
Compton effect and	Compton				
Compton scattering	scattering and				
3.15 Define Heisenberg	define				
uncertainty principle	e. Heisenberg				
	uncertainty				
	principle.				
General Objectives 4.0 Use spect					
4.1 Explain spectroscop	- · ·	Zeeman effect	Demonstrate the	Demonstrate the	State the principles
	ts Discuss the	apparatus	experimental	experimental	and applications of
theoretical	concept of spectroscopy in		procedure used to	procedure used	atomic
foundation.	the study of		observe and quantify	to observe and	spectroscopy.
1	e atoms		the Zeeman	quantify the	
frequency of any lir	e		components for one	Zeeman	List types of spectra
of the spectrum	1 1		or more spectral	components for	and identify the
proportional to the	anostro linoa		lines, measure the	one or more	appearance of each.
difference betwee	n spectra mes		splitting and	spectral lines,	

the values of the energies of the two states of the atom emitting and absorbing the radiation4.3 List the types of spectra describing the physical appearance of each spectra line.4.4 Explain the behavior of the lines when the emitting atoms are subjected to external electric and magnetic fields (Zeeman's effect)	Describe normal and anomalous Zeeman's effect Calculate some simple problems involving the frequency, wavelength etc. between two energy levels. Explain the behavior of the lines when the	Lecture notes, reference texts and materials.	compare the results with theoretical predictions.	measure the splitting and compare the results with theoretical predictions, for the students	Direct the students to calculate some simple problems involving the frequency, wavelength etc. between two energy levels. Ask the students to explain how to measure magnetic
 4.5 Explain Zeeman's effect 4.6 Explain how to measure magnetic field intensity using Zeeman's effect 4.7 Explain the orbital, spin, and magnetic numbers of the atom. 4.8 Describe the Stern- Gerlach experiment to demonstrate electron spin 4.9 Solve numerical problems involving the energies of a spectrum, the 	lines when the emitting atoms are subjected to external electric and magnetic fields (Zeeman's effect) Explain Zeeman's effect Explain how to measure magnetic field intensity using Zeeman's effect				field intensity using Zeeman's effect and explain the orbital, spin, and magnetic numbers of the atom.

wavelength, frequency an wave number between two levels.General Objectives 5.0 C	er energy	nicroscopy in Nano science	
5.1 Describe el microscopy name four electron microscope 5.2 Explain mi technique a role in Nan Science	y and kinds of Discuss with illustrations the croscopy and its technique in t o-scale Science.	Charts/Pictures	Teacher guide students to identify types of microscopes to enable students appreciate the role of each in Nano- science research.
 5.3 Explain the advancement electron mit techniques respect to nanoparticle flavivirus r 5.4 Explain the principles a application Atomic for microscopy [ii] Scanning 	nt of Explain the basic of Atomic force es and microscopy, esearch. AFM [ii] basic Scanning and Electron of [i] microscopy, ce SEM [iii] 7, AFM Transmission ag electron	1 f[i]	Instruct the students to explain the basic principles and application of Atomic force microscopy, AFM Scanning Electron microscopy, SEM, Transmission electron
Electron microscopy [iii] Transr electron mi TEM 5.5 Name the p	nission croscopy, Name the par and probe of		microscopy, TEM Ask the students to name the parts and

probe of each	explained in		probe of each
microscopy	(5.4)		microscopy and
mentioned in (5.4)	Explain the		explain the image
5.6 Explain the image	image that can		that can be seen
that can be seen	be seen using		using different
using different kinds	different kinds of		kinds of electron
of electron	electron		microscopy
microscopy.	microscopy.		
General Objectives 6.0 Appreciate	e the nature and ap	oplication of X-rays	
6.1 Describe the	Lecture students	Text books	Describe the
production of X-rays,	to	Internet	production of X-
explaining its nature,	Describe what	Classroom	rays.
properties and uses.	happens when	Resources	
6.2 Explain how the	an X-ray beam is	Charts/Pictures	Explain the effect
intensity of an X-ray	passed through		of X-ray when
beam is reduced upon	body.		incident on planes
passing through			in a crystal.
matter	Explain as stated		
6.3 Derive an expression	in 6.4		Describe the
for the intensity, <i>I</i> , of			different types of
a beam after passing			emission resulting
through a thickness <i>X</i> ;			from X-ray
ie $I = I_o e^{-\mu x}$	Discuss		production,
6.4 Define (i) linear	secondary		
absorption coefficient	emission in		State Mosley's law
(ii) mass absorption	X-radiation		and with the aid of
coefficient of			a diagram the
absorption. State the			characteristic
relationship between			features of
the coefficients.		Lecture notes,	Mosley's law.
6.5 Explain how	Lecture	reference texts and	State the
secondary emission		materials.	relationship
occurs when X-rays	Explain coherent		between the
are absorbed.	and		accelerating voltage

6.6 Describe the different	Incoherent				and the quality of
types of emission	scattering.				X-rays.
resulting from X-ray production,	Discuss the	Lecture notes and			Describe with the
6.7 State Mosley's law.	characteristic of	reference texts.			aid of a diagram the
6.8 Describe with the aid	spectrum				characteristic
of a diagram the	produced by an				features of
characteristic features	X-ray				Mosley's law.
of Mosley's law.	-				
6.9 State the relationship	Describe				
between the	Mosley's law				
accelerating voltage	using				
and the quality of X-	Diagram				
rays.	1:00				
6.10 Explain what	different types				
happens when a	of emission				
parallel beam of X- rays falls on given	resulting from X- ray production,				
family of planes in a	ray production,				
crystal.	Mosley's law.				
6.11 State and derive					
Bragg's law.	Describe with				
6.12 Describe how to	the aid of a				
determine X-ray	diagram the				
absorption	characteristic				
coefficient.	features of				
	Mosley's law.				
General Objective 7.0 Appreciate t	8			Γ	
7.1 Analyze nuclear	Lecture	Tuning – eye	Determine the	The student	Direct the students
structure,		vacuum tube	Charge to mass ratio	should	to state the
constituents and	Discuss the	(6AF6), Air-core	(e/m) of the electron	determine the	conservation laws
properties, (isotopes,	concept of	solenoid, variable dc		Charge to mass	of nuclear reactions
isobars, binding	nuclear	power supply (250 V		ratio (e/m) of the electron	and describe the
energy, stability).	reactions.	dc), ac power supply		of the electron	general features of

7.2 Explain the general		(6.3 V ac), dc power	nuclear reactions.
features of nuclear		supply (12 V dc),	nuclear reactions.
reactions.		rheostat, dc ammeter	
7.3 Explain the		(0 to 5A),	Direct the students
conservation laws of	Discuss nuclear	connecting wires,	to calculate the
nuclear reactions.	fuels.	Vernier calipers and	expectation
7.4 Derive an expression	Iucis.	meter ruler, wooden	1
for the Q-value of a		dowels of different	function of a given reaction and
nuclear reaction.		diameter	
7.5 Define a nuclear		diameter	explain nuclear
			reactions [i] general
cross-section.	Calavlata areas		features, and [ii]
7.6 Derive an expression	Calculate cross-		kinematics of the
for nuclear cross-	section from		compound nucleus
section.	supplied		
7.7 Calculate the	information		
expectation function	D: 1		
of a given reaction.	Discuss nuclear		
7.8 Explain nuclear	fuels		
reactions [i] general	Categorize		
features, and [ii]	nuclear reactors		
kinematics of the	in		
compound nucleus,	terms of coolant,		Ask the students to
7.9 State Breit-Wigner	conversion		state Breit-Wigner
formula, nuclear	ratio and neutron		formula, nuclear
fusion and f1ssion.	energies.		fusion and f1ssion

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Material Science	CODE: PYE 312	Contact Hour: 4 Hours/Week
Credit Unit: 2	Pre-requisite	Theoretical: 2 Hours/Week
Year: 1	Semester: First	Practical: 2 Hours/week

Course main Goal: This course is designed to provide students with the knowledge of basic structure and properties of materials with specific attention to alloys and metals.

On completion of this course, the student should be able to:

- 1.0 Comprehend the classification of materials
- 2.0 Translate the relevant electrical properties of materials
- 3.0 Recognize the magnetic properties of materials
- 4.0 Appreciate the thermal properties of materials
- 5.0 Recognize the optical properties of materials
- 6.0 Appreciate the science of Nano materials

PROGRAMME: HIGHER NATIONAL DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS OPTION)

Course Title: Material Science	Code: PYE 312	Credit Units: 2 Units					
Course specifications: Theoretical contents	Practical Code: PYE 316	Contact Hours: 2 Hours					
General Objective 1.0 Comprehend the classification of materials Appreciate the science of Nano materials							

General Objective 1.0 Comprehend the classification of materialsAppreciate the science of Nano materials

Wee k	Specific Learnin Outcomes	ıg	Teacher's Activities	Resources	Specific Learning Outcomes	Teacher's Activities	Evaluation
	Specific Learning	g					
	Objective						
	1.1 Explain	the	Differentiate	Solid copper wire	Determine the	The students	Differentiate
	meaning	of	materials with	coil, Liquid	effect of	should	materials with
	materials		regards to their	nitrogen with	temperature on	determine the	regards to their

 science and chemical constituent, physical internal structure arrangement. 1.2 Explain the need characteristics and internal structure arrangement. 1.3 Explain the red characteristics of materials: mechanical, cleetrical metals and semiconductors. 1.3 Explain the red characteristics of materials: mechanical, cleetrical metals and magnetic. 1.3 Explain the red for modern materials. 1.4 State the properties of materials. 1.5 Explain the need for materials. 1.4 State the modern materials. 1.5 Explain the need for materials. 1.4 State the modern materials. 1.5 Explain the need for materials. 1.4 State the modern materials. 1.5 Explain the need for materials the properties of materials the properties of materials the properties of materials. 1.5 Explain the need for materials. 1.4 State the properties of materials. 1.5 Explain the need for materials. 1.4 State the properties of materials. 1.5 Explain the need for materials. 1.5 Explain the need for materials. 1.6 Explain the need for materials. 	Г — —Т	• • • •	1 1	1 1 .	1 / 1	<u> </u>	1 · 1 ···
 1.2 Explain the need for the study of materials arrangement. 1.3 Explain the various colling water is the properties of materials. 1.3 Explain the colling water is the properties of materials. 1.4 State the properties of materials. 1.5 Explain the need for materials. 1.5 Explain the need for materials. 1.5 Explain the need for materials. 			· · · · · · · · · · · · · · · · · · ·				
Image: Internal structure arrangement.bath, hot plate/ boiling water boiling water bath, multimeter, thermocouple, electric furnace, silicon wafer and wre leadssemiconductors metals and semiconductor sinternal structure arrangement.1.3 Explain the various classifications of materials: metals, ceramics, polymers composites and other advanced materials.State the properties of materialssemiconductors sconductivity of metals and semiconductorsinternal structure arrangement.1.4 State properties. biomaterials.Explain the need for modern materialsExplain the need for modern materialsLecture note with reference text and materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4 State metanical, electrical and nano materials.file materials.Lecture note with reference text and materialssemiconductors, explain the need for modern materialssemiconductors, explain the need for modern materialssemiconductors, explain the need for modern materials1.4 State materials.the properties of materials.semiconductors, explain the need for modern materialssemiconductors, explain the need for modern ma		5 5		,	5	-	1 2
materials science engineering.arrangement.boiling water bath, multimeter, thermocuple, electric furnace, silicon wafer and wire leadsmetals and semiconductor sarrangement.1.3Explain the various of materials: metals and materials: and magnetic.State the properties of materials physical, modern materialsboiling water bath, multimeter, thermocuple, electric furnace, silicon wafer and wire leadsmetals and semiconductor sDirect the students to state the properties of materials: physical, modern materialspolymers composites and other advanced materials.Explain the need for modern materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State the properties of materials, physical, mechanical, electric al and nano materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State the properties of materials, physical, mechanical, electrical and magnetic.Imaterials materialsImaterials materials1.4State the properties of materials, physical, mechanical, electrical and magnetic.Imaterials materialsImaterials materials1.5Explain the need for modernImaterialsImaterials materialsImaterials materials1.5Explain the need for modernImaterialsImaterials materialsImaterials materials1.5Explain the need for modern				1			
scienceandand1.3Explain thestate the properties ofbath, multimeter, thermocouple, electric fumace, silicon wafer and wire leadssemiconductor1.3Explain theState the properties of materials; physical, mechanical, electrical and magnetic.bath, multimeter, thermocouple, electric fumace, silicon wafer and wire leadsDirect the students to state the properties of materials; physical, mechanical, electrical and magnetic.1.4Explain the need for composites and other advanced materials, simant materials, simant materials, materials,Explain the need for modern materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4Statethe properties of materials; physical, mechanical, electrical and magnetic.Lecture note with reference text and materialsAsk students to explain the need for modern materials1.4Statethe properties of materials; physical, mechanical, electrical and magnetic.Lecture note with reference text and materialsImaterials1.5Explain the need for modernImaterialsImaterialsImaterials1.5Explain the need for modernImaterialsImaterials1.5Explain the need for modernImaterialsImaterials1.5Explain the need for modernImaterialsImaterials1.5Explain the need for modernImaterialsImaterials1.6Imaterials <td< td=""><td></td><td>5</td><td>internal structure</td><td>· ·</td><td>semiconductors</td><td>2</td><td>internal structure</td></td<>		5	internal structure	· ·	semiconductors	2	internal structure
engineering.s1.3 Explain the variousState the properties of materials:thermocouple, electric furnace, silicon wafer and wire leadss0 dassifications of materials:State the properties of materials: physical, mechanical, electrical and magnetic.b)Direct the students to state the properties of materials: physical, mechanical, electrical and magnetic.polymers composites and other advanced materials such as semiconductors, biomaterials.Explain the need for modern materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State the properties of materials.Lecture note with reference text and materialsHermocouple, electrical and magnetic.1.4State the properties of materials.Hermocouple, method as semiconductors, biomaterials, nochanical, electrical and magnetic.Hermocouple, electrical and magnetic.1.5Explain the need for modern materialsHermocouple, electrical and magnetic.Hermocouple, electrical and magnetic.1.5Explain the need for modern materialsHermocouple, electrical and magnetic.Hermocouple, electrical and materialsHermocouple, electrical and magnetic.1.5Explain the need for modernHermocouple, electrical and magnetic.Hermocouple, electrical and electrical and magnetic.Hermocouple, electrical and electrical and electrical and electrical and electrical and electrical and electrical and<			arrangement.	0			arrangement.
1.3 Explain the various classifications of materials: metals, ceramics, polymers composites and other advanced materials such as semiconductors, biomaterials.State the properties of modern materialselectric furnace, silicon wafer and wire leadsDirect the students to state the properties of materials: hysical, mechanical, electrical and nano materials.1.4 State properties of materials.Explain the need for modern materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4 State properties of materials.the properties of materials.He materialsHe materials1.4 State mechanical, electrical and magnetic.the materialsHe materials1.5 Explain the need for modern materialsHe modern materialsHe materials1.5 Explain the need for materialsHe modern materialsHe materials1.5 Explain the need for materialsHe modern materialsHe materials1.5 Explain the need for modern materialsHe modern materialsHe modern materials1.5 Explain the need for modern materialsHe modern materialsHe modern materials1.6 Explain the need for modern materialsHe modern materialsHe modern materials1.6 Explain the need for modern materialsHe modern materialsHe modern materials1.7 State for modern materialsHe modern mode		science and		bath, multimeter,		semiconductor	
Image: state the properties of classifications of materials: polymers ceramics, polymersState the properties of materials: physical, mechanical, electrical and magnetic.State the properties of materials: physical, mechanical, electrical and magnetic.Direct the students to state the properties of materials: physical, mechanical, electrical and magnetic.Image: state the properties of composites and other advanced materials such as semiconductors, biomaterials, materialsExplain the need for modern materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State the properties of materials, smart materials and nano materials, semiconductors, biomaterials, semiconductors, biomaterials, materialsLecture note with reference text and materialsHere are are are are are are are are are		0				S	
classifications of materials: metals, ceramics, polymers composites and other advanced materials, semiconductors, biomaterials, smart materialsmaterials physical, modern materialswire leadsstate the properties of materials: physical, mechanical, electrical and magnetic.1.4State the properties of materials.Explain the need for modern materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State the properties of materials.Image: text of te		1.3 Explain the		-			
of materials: methanical, electrical and magnetic. ceramics, polymersmechanical, electrical and magnetic.materials: physical, mechanical, electrical and magnetic.polymers composites and other advanced materials such as semiconductors, biomaterials, materialsExplain the need for modern materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State mechanical, electrical and nano materials: physical, mechanical, electrical and magnetic.Herein and the meed materialsHerein and the meed materials1.5Explain the need for materialsHerein and mechanical, electrical and materialsHerein and materialsHerein and materials1.5Explain the need for materialsHerein and materialsHerein and materialsHerein and materials1.6Explain the need for materialsHerein and materialsHerein and materialsHerein and materials			State the properties of				Direct the students to
metals, ceramics, polymersand magnetic.polymers composites and other advanced materials such as semiconductors, biomaterials, materialsExplain the need for modern materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State materials: physical, mechanical, electrical and materials: physical, mechanical, electrical and materials:Image: Composition of the text and materialsImage: Composition of text and materials1.5Explain the need for modern materialsImage: Composition of text and materialsImage: Composition of text and materialsImage: Composition of text and materials1.5Explain the need for modern materialsImage: Composition of text and materialsImage: Composition of text and materialsImage: Composition of text and materials1.5Explain the need for modern materialsImage: Composition of text and materialsImage: Composition of text and materials1.5Explain the need for modern materialsImage: Composition of text and materialsImage: Composition of text and materials1.5Explain the need for modernImage: Composition of text and materialsImage: Composition of text and materials1.5Explain the need for modernImage: Composition of text and materialsImage: Composition of text and materials1.5Explain the need for modernImage: Composition of text and materialsImage: Composition of text and mat		classifications		wire leads			state the properties of
ceramics, polymersExplain the need for modern materialsLecture note with reference text and materials such as semiconductors, biomaterials, smart materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State the properties of materials, electrical and nano materialsImage: Composite text and materialsImage: Composite text and materialsImage: Composite text and materials1.4State the properties of materials, electrical for modernImage: Composite text and materialsImage: Composite text and materials1.5Explain the need for modern materialsImage: Composite text and materialsImage: Composite text and materialsImage: Composite text and materials1.5Explain the need for modern materialsImage: Composite text and materialsImage: Composite text and materialsImage: Composite text and materials1.5Explain the need for modern materialsImage: Composite text and materialsImage: Composite text and materials1.5Explain the need for modern materialsImage: Composite text and materialsImage: Composite text and materialsImage: Composite text and materials1.5Explain the need for modern materialsImage: Composite text and materialsImage: Composite text and materialsImage: Composite text and materials1.5Explain the need for modernImage: Composite text and materialsImage: Composite text and <b< td=""><td></td><td>of materials:</td><td>mechanical, electrical</td><td></td><td></td><td></td><td>materials: physical,</td></b<>		of materials:	mechanical, electrical				materials: physical,
polymers composites and other advanced materials such as semiconductors, biomaterials, smart materialsLecture note with reference text and materialsAsk students to explain the need for modern materials1.4State properties of materials: physical, mechanical, electrical and nagnetic.Lecture note with reference text and materialsAsk students to explain the need for modern materials1.5Explain the need for modernImage: Student studen		metals,	and magnetic.				mechanical, electrical
composites and other advanced materials such as semiconductors, biomaterials, smart materialsmodern materials Lecture note with reference text and materialsAsk students to explain the need for modern materials1.4State properties of materials: physical, mechanical, electrical and magnetic.Lecture note with reference text and materialsAsk students to explain the need for modern materials1.5Explain the need for modern materialsImage: Composition of the student		ceramics,					and magnetic.
other advanced materials such as semiconductors, biomaterials, smart materials and nano materials.Lecture note with reference text and materialsexplain the need for modern materials1.4State properties of materials: physical, mechanical, electrical and magnetic.Image: Comparison of the text of the text of text o		polymers	Explain the need for				
materials such as semiconductors, biomaterials, smart materials and nano materials. reference text and materials modern materials 1.4 State the properties of materials. 1.4 State the properties physical, mechanical, electrical and magnetic. 1.5 Explain the need for for modern		composites and	modern materials				Ask students to
as materials semiconductors, biomaterials, smart materials and nano materials. 1.4 State the properties of materials: physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		other advanced		Lecture note with			explain the need for
semiconductors, biomaterials, smart materials and nano materials. 1.4 State the properties of materials: physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		materials such		reference text and			modern materials
biomaterials, smart materials and nano materials. 1.4 State the properties of materials: physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		as		materials			
smart materials and nano materials. 1.4 State the properties of materials: physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		semiconductors,					
and nano materials. 1.4 State properties of materials: physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		biomaterials,					
materials. 1.4 State the properties of materials: physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		smart materials					
1.4 State the properties of materials: physical, mechanical, electrical electrical and magnetic. 1.5 Explain the need for modern materials		and nano					
properties of materials: physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		materials.					
materials: physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		1.4 State the					
physical, mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		properties of					
mechanical, electrical and magnetic. 1.5 Explain the need for modern materials		materials:					
electrical and magnetic. 1.5 Explain the need for modern materials		physical,					
magnetic. 1.5 Explain the need for modern materials		mechanical,					
1.5 Explain the need for modern materials		electrical and					
1.5 Explain the need for modern materials		magnetic.					
for modern materials		1.5 Explain the need					
1.6 Explain the		materials					
		1.6 Explain the					

mate selec mate	erties of erials and etion of erials.	slate the relevan	nt electric	al properties of mater	ials		
2.1 Expl elect cond Desc ener struc solid 2.2 Expl cond term and bond 2.3 Desc elect char	ain crical luctivity. cribe the gy band ctures in ls. lain luction in s of bands atomic ling models.	Lecture	electrical	Solid copper wire coil, liquid nitrogen with Dewar, dry ice, ice water bath, room temp water bath, hot plate/boiling water bath, multimeter, thermocouple, electric furnace, silicon wafer and wire leads.	Determine the effect of temperature on electrical conductivity of metals (copper) and semiconductors (Silicon).	The students should determine the effect of temperature on electrical conductivity of metals and semiconductor s	Direct the students to explain the different types conduction in terms of bands Direct the students should determine the dielectric Constant of different materials
depe elect conc Sem 2.5 State affee mob	ain the perature endence of crical luction in iconductors.			Set of parallel plate capacitors (Diameter = 26 cm), high voltage power supply (0- $10kV$), a 10 M Ω resistor, reference capacitor (220nF), universal	Determine the dielectric Constant of different materials	The student should determine the dielectric Constant of different materials	

devices. measuring	
6	
2.6 Explain amplifier,	
dielectric voltmeter,	
materials and dielectric	
dielectric materials (Plastic	
strengths and glass plates),	
2.7 Explain Ferro connecting cables,	
electricity and adapters, and T-	
Piezoelectricity connectors	
General Objectives: 3.0 Recognize the magnetic properties of materials	
3.1 ExplainLectureStrongDetermine the	e Direct the Ask the student to
magnetism and neodymium effect of	student to determine the effect
3.2 Explain Bohr Describe magnetic magnet 50 grade. Temperature	on determine the of Temperature on
magneton properties of various Dimension Electric	effect of Electric Current,
3.3 Explain materials 50*20*10 mm, Current,	Temperature Magnets and
Magnetic refrigerator for Magnets and	on Electric Electromagnet.
dipoles cooling the Electromagne	et. Current,
3.4 Explain magnet, electricity	Magnets and
Magnetic field and some electric	Electromagnet.
and derive an component to heat	Instruct the students
expression for Explain the effect of up the magnet, a	to Explain the effect
magnetic flux temperature on set of	of temperature on
density. magnetic materials electromagnet (magnetic materials
3.5 Explain and also explain having resistance	and also explain
magnetic magnetic domain and of 700 Ohm), dry	magnetic domain and
susceptibility. hysteresis ice for cooling	hysteresis
3.6 State and electromagnet,	
explain the gloves and glasses	
various types of for safety	
magnetism [i] purposes,	
Dia-magnetism electricity	
[ii] para- measuring tool,	
magnetism [iii] Gauss meter for	
Ferro- measuring the	

	.·		C t			
0	netism [iv]		power of magnet			
anti-			and also of			
	magnetism		electromagnet and			
[v] F			boiled water (one			
<u> </u>	netism.		tub).			
3.7 Expla	ain the					
effec	et of					
temp	berature on					
magr	netic					
mate	rials.					
3.8 Expla	ain					
magr						
<u> </u>	ain and					
hyste	eresis					
3.9 Expla						
magr						
stora						
3.10 Expl	•					
-	i-hard and					
	l magnetic					
	erials.					
		eciate the thermal proper	ties of materials			
	11	1 1		Determine the	The standards	Ding at at allowing to
	1	Lecture	Linear-expansion	Determine the	The students	Direct students to
	capacity		apparatus, steam	coefficients of	Should	explain the
	specific		generator,	expansion of	determine	difference between
	t heat.		breaker, 100 ° C	several metals.	The coefficient	thermal expansion/
		Describe thermal	thermometer,		of expansion	contraction
	nsion/contr	properties of various	rubber tubing,		of several	
actio		materials	metal rods of		metals.	
4.3 Expla			aluminum, iron,			
	ficient of		copper, brass, and			
thern			steel.			
	nsion.			Determine the		
4.4 Expla	ain thermal	Explain thermal		specific heat	Direct the	

		N	· · · · · · · · · · · · · · · · · · ·	-4	[]
expansion in	conductivity, melting	Newton's law of	capacity of a	students to	
crystalline and	and boiling points.	cooling apparatus,	liquid using the	determine the	
semi-crystalline	T 1 1 1	copper	cooling	specific heat	
materials	Explain thermo-	calorimeter with a	method.	capacity of a	
4.5 Explain thermal	elastic properties of	wooden lid,		liquid using	Short verbal
expansion in	materials,	stirrer, an open		the cooling	questions on thermo-
non-crystalline	thermal stress,	double – walled		method.	elastic properties of
(amorphous)	specific heat capacity	vessel, two			materials, thermal
materials: the	and specific latent	Celsius			stress, specific heat
glass transition.	heat.	thermometers(eac			capacity and specific
4.6 Explain thermal		h with least count			latent heat. Give
conductivity		0.5 ° C or 0.1 ° C),			numerical examples.
4.7 Explain melting		stop clock/watch,			
and boiling		heater/burner,			
points		liquid (water),			
4.8 Explain thermo-	Explain thermal	clamp stand, two			Direct students to
elastic	expansion/contraction	rubber stoppers			explain thermal
properties of	, conductivity,	with holes, strong			expansion/contraction
materials.	thermal expansion in	cotton thread,			, conductivity,
4.9 Explain thermal	non-crystalline	beaker, copper			thermal expansion in
stress	(amorphous)	calorimeter with			non-crystalline
4.10 Explain specific	materials: the glass	stirrer, double-			(amorphous)
heat capacity	transition.	walled enclosure			materials: the glass
and specific		with cold water			transition.
latent heat.	Explain melting,	between the walls,			
4.11 Explain thermal	boiling points,	thermometer			
expansion/contr	thermo-elastic	$(0.1^{\circ}C)$, stop			Instruct students to
action	properties of	clock/watch,	Determine the		Explain melting,
4.12 Explain the	materials and thermal	heater/burner, and	specific heat	Direct the	boiling points,
coefficient of	stress	rubber stoppers.	capacity of a	students to	thermo-elastic
thermal			bad conductor.	determine the	properties of
expansion.		D 1 (11)		specific heat	materials and thermal
4.13 Explain thermal		Beaker of 1 litre		capacity of a	stress
expansion in		(mixture of ice		bad conductor.	

	1		I		1		I
		crystalline and		and water at 0 $^{\circ}$			
		semi-crystalline		C), ice,			
		materials		thermometer (1 [°]			
	4.14	Explain thermal		C interval), test			
		expansion/contr		tube (diameter			
		action		about 25 mm),			
	4.15	Explain thermal		tube should be			
		expansion in		fitted with a cork			
		non-crystalline		drilled centrally to			
		(amorphous)		take the			
		materials: the		thermometer and			
		glass transition.		slot for stirrer,			
	4.16	Explain thermal		stopwatch (0.1 s),			
		conductivity		Vernier calipers,			
	4.17	Explain melting		double stirrer, and			
		and boiling		retort stand.			
		points					
	4.18	Explain thermo-					
		elastic					
		properties of					
		materials.					
	4.19	Explain thermal					
		stress					
Gener	al Ob	jective: 5.0 Reco	gnize the optical propert	ies of materials			
	5.1	Explain	Lecture	Lee's apparatus	Determine	Direct the	Ask students to
		electromagneti		and the	thermal	students to	describe optical
		c radiation.	Describe optical	experimental	conductivity of	determine	properties of various
	5.2	Explain	properties of various	specimen in the	a bad	thermal	materials and explain
		material -light	materials and explain	form of a disc,	conductor	conductivity of	reflection, refraction,
		interaction	reflection, refraction,	two	(glass) in form	a bad	diffraction,
	5.3	Classify optical	diffraction,	thermometers,	of a disc using	conductor	[interference and
		materials	[interference and	stop watch,	Lee's method.	(glass) in form	polarization.
	5.4	Explain optical	polarization	weighing balance,		of a disc using	-
		properties of [i]	Discuss the following	special lamp		Lee's method.	Instruct the students

	metals and [ii]	optical phenomena:	stand, boiler and		to discuss the
	non-metals.	luminescence (photo-	heater.		following optical
5.5	Explain [i]	luminescence,	noutor.		phenomena:
5.5	reflection, [ii]	cathode-			luminescence (photo-
	refraction, [iii]	luminescence, and			luminescence,
	diffraction, [iv]	electro-			cathode-
	interference	luminescence,)			luminescence, and
	and [v]	thermal emission	Lecture notes with		electro-
	polarization.	photoconductivity	reference texts		luminescence,)
5.6	1	photocolluctivity	and materials.		thermal emission
5.0	absorption and		and materials.		photoconductivity
	transmission.				photocolluctivity
5.7	Explain				
5.7	absorption				
	mechanism				
58	Describe the				
5.0	following				
	optical				
	phenomena: [i]				
	luminescence				
	(photo-				
	luminescence,				
	cathode-				
	luminescence,				
	and electro-				
	luminescence,)				
	[ii] thermal				
	emission [iii]				
	photo-				
	conductivity				
59	Describe the				
0.7	following [i]				
	laser, optical				
	fibres				
	110103				

4	5.10 Explain the				
	various types of				
	optical fibres				
4	5.11 State the				
	properties of				
	optical fibres.				
General	Objective: 6.0 Appre	ciate the science of Nan	o materials		
(6.1 Describe nano	Lecture	Lecture notes with		Direct students to
	materials.		reference texts		describe nano
(6.2 Explain the	Describe nano	and materials.		materials and explain
	methods of	materials and explain			the methods of
	synthesis of	the methods of			synthesis given
	nano particles:	synthesis			several examples.
	[i] chemical				1
	methods and [ii]				
	pulsed laser				
	methods.	Explain microscopy			Ask students to
(6.3 Explain the size	techniques –			explain microscopy
	dependence of	transmission electron			techniques –
	properties of	microscopy and			transmission electron
	materials.	scanning microscopy.			microscopy and
	6.4 Explain the	C 17			scanning microscopy.
	methods of				0 15
	measuring these	Explain spectroscopic			
	properties.	techniques –IR,	-do-		Instruct the students
	6.5 Explain particle	Raman spectroscopy,			to explain
	size	and magnetic			spectroscopic
	determination.	resonance.			techniques –IR,
	6.6 Explain				Raman spectroscopy,
	microscopy				and magnetic
	techniques –				resonance.
	transmission				
	electron				
	microscopy and				

scanning			
microscopy.			
6.7 Explain			
spectroscopic			
techniques -IR,			
Raman			
spectroscopy,			
and magnetic			
resonance.			

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Electric Circuit Theory	Code: PYE 313	Contact Hours: 4 Hours/Week
Credit Unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 1	Semester: First	Practical: 2 Hours/week
	· · · · · · · · · · · · · · · · · · ·	

Course main Goal: This course is intended to enable the student acquire basic knowledge of electric circuit theory.

General Objectives:

On the completion of the course, the student should be able to:

1.0 Outline basic laws and generalized methods of circuit analysis.

2.0 Outline Network theorems and their application to dc Electrical circuit.

3.0 Use ac theory and its application to electrical solve circuit problems

4.0 Appreciate the sinusoidal steady- state analysis

5.0 Appreciate the ac power analysis

6.0 Determine ac resonance

7.0 Translate the concept of three phase ac circuits

ELECTRONICS)							
Course	Title: Electric Circuit Theory	Code: PYE 313		Credit Unit: 2 Units			
	specifications: Theoretical cont	Practical Code: PYE 316		Contact Hours: 2	Hours		
	8.0 General Objective 1.0: Outline basic laws and generalize		ed methods of circuit an	alysis.			
Transla	te the concept of three phase ac	circuits	1				
Week	Specific Learning Outcomes	Teacher's Activities	Resources	Specific Learning Outcomes	Teacher's Activities	Evaluation	
	 Basic Laws 1.1 State Ohm's Law. 1.2 State Kirchhoff's voltage and current laws. 1.3 Calculate voltage drops and total current at a point in complete circuit applying Kirchhoff's laws. 1.4 Explain Series Resistors and Voltage Division 1.5 Explain Parallel Resistors and Current Division 	State Ohm's law and Kirchhoff's law. Solve numerical problems in Ohm's law and Kirchhoff's law. Derive equations for series and parallel	dc circuit training system, set of wires, dc Power supply, digital A.V.O. meter	Investigate Kirchhoff's laws practically	The students should be asked to perform the experiment to investigate Kirchhoff 's laws practically	Assign numerical problems involving computation of Kirchhoff's voltage and current laws, series resistors and voltage division.	
	 1.6 Explain the term: Nodes, Branches, and Loops 1.7 Describe simultaneous equations in circuit analysis 1.8 Explain Branch-current analysis 1.9 Explain Mesh analysis (general approach) 1.10Evaluate Super-mesh current analysis 	arrangement of resistors. Numerical solve, problems Lecture with worked	(1) Universal circuit board, (2) D-cell batteries (1.5 V), (2) battery holders, (4) alligator clips, (1) DMM, (5) resistors: (R1 = 10 Ω , resistor R2 = 12 Ω , resistor R3 = 15 Ω , resistor	Apply Kirchhoff's rules for circuits to a two-loop circuit to determine the three currents in the circuit	Direct students to apply Kirchhoff's rules for circuits to a two-loop circuit to determine the three currents in the circuit and the electric	Assign problems on Branch-current analysis, Mesh analysis, Super- mesh current, Nodal analysis, bridged networks,	

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

		-				,
	1.11Evaluate Mesh analysis	examples.	$r4 = 18 \Omega$ and	and the	potential	
	(format approach)		resistor R5 = 22 Ω).	electric	differences	
	1.12Evaluate Nodal analysis	State		potential	around each	
	(general approach)	applications,		differences	loop.	
	1.13Evaluate Nodal analysis	give and solve		around each	_	
	(format approach)	problem using		loop.		
	1.14Evaluate bridged	Mesh analysis.		1		
	networks					
	1.15Identify the Wye and					
	Delta network					
	transformations.	Lecture with				
	1.16 Recognize the	worked				Assign problems
	conversion of Delta to	examples.				on Wye and
	Wye and Wye to Delta	examples.				Delta network
	networks.					transformation,
	networks.					conversion of
						Delta to Wye
						5
			、			and Wye to
		1 1. 1				Delta networks.
General C	Objectives 2.0 Outline basic law	ws and generalized i	methods of circuit analy	/S1S.		
	Network Theorems		Recognize Network	Recognize	Direct the	Direct the
	2.1 Explain linearity property		theorems and their	Network	students to	students to
	2.2 Explain source		application to dc	theorems and	verify the	solve various
	transformation		Electrical circuit.	their	superposition	problems on
	2.3 State superposition			application to	theorem for the	superposition
	theorem and explain the			dc Electrical	given circuit.	theorem.
	application of			circuit.	given encuit.	uicorein.
	superposition theorem.	Statement of				
	2.4 Calculate the current in	super position				
		with solved				
	any branch of a network					
	by applying the	numerical				
	superposition theorem.	examples.				
	2.5 State Thevenin's					

theorem.	Lecture		Direct the	Direct the
2.6 Explain the application	Solve numerical		students to	students to
of Thevenin's theorem.	problems		investigate	solve various
2.7 Replace any circuit by	applying		Thevenin's and	problems on
the Thevenin's	superposition		Norton's	Thevenin's and
equivalent circuit.	theorem.		theorem	Norton's
2.8 Calculate the following:	Lecture with		practically.	theorem.
parameters in any branch	solved examples.			
of a network applying				
Helmholtz – Thevenin's				
theorem; [a] current [b]	Solve numerical			
internal impedance [c]	problems.			
potential difference	-			
across the branch				
terminals.				
2.9 State Norton's theorem				
2.10Explain the application				
of Norton's theorem.				
2.11Calculate the following				
parameter in any branch				
of a network applying	Apply Norton's			
Helmholtz – Norton's	theorem in the		Direct the	Ask the
theorem;	solution of		students to	students to
[a] the voltage across any	circuit problems.		investigate	solve various
branch of the network.			maximum	problems on
[b] Internal shunt	Lecture		power transfer	Thevenin's and
admittance of the	Solve numerical		theorem	Norton's
network looking into the	examples.		practically.	theorem.
branch terminals.	_		-	
2.12 State [i] Maximum				
power transfer theorem	Discuss the			
[ii] Millman's theorem	applications.			
(parallel – generated			Direct the	Ask the
theorem). [iii]			students to	students to

Substitution theorem [iv] Reciprocity theorem. 2.13 Explain the application of theorems above. 2.14 Solve problems on network circuits by applying the theorems above.	Give examples using the theorem in 2.12			investigate reciprocity theorem practically.	solve various problems on reciprocity theorem
3.0 Use ac theory and its application to e Sinusoids and Phasors	Lecture		Determine the		Direct
 3.0 Explain Sinusoids and Phasors 3.0 Explain Sinusoids and Phasors. 3.1 Convert the polar form of ac signal to j notation. 3.2 Use j oprator to Subtract, add, multiply and divide phases. 3.3 Draw phase diagrams to scale for ac circuits, i.e. series and parallel. 3.4 Explain, with the aid of phasor diagrams, the current and voltage relationship in [i] inductive circuits and [ii] capacitive circuits. 3.5 Explain Phasor Relationships for Circuit Elements [i] impedance [ii] 	Lecture Solve numerical problems showing the conversions. Draw phase diagrams to scale for ac circuits, i.e. series and parallel and explain, with the aid of phasor diagrams, the current and	Power supply module EMS 8821, ac voltmeter module EMS 8426, ac current meter module EM.S 8428, resistance module EMS 8311, inductance module EMS 8321, capacitance module EMS 8321	Determine the phasor relationship between voltage and current in a single-phase ac circuit.		Direct students to solve various phasor problems Direct the students to draw phase diagrams to scale for ac circuits, i.e. series and parallel and explain, with the aid of phasor diagrams, the
admittance 3.6 Distinguish between	voltage relationship in	Lecture notes,			current and voltage
inductive and capacitive	inductive circuits	reference texts and			relationship in
	reactances.	and capacitive	materials.		inductive circuits
----------	------------------------------------	-----------------------	----------------------------	--------------	--------------------
	3.7 Explain, with the aid of	circuits.			and capacitive
	phasor diagrams, the	circuits.			circuits.
	current and voltage				circuits.
	relationship in series L-				
	C-R circuit.				Instruct students
	3.8 Explain Kirchhoff's laws				to explain
	in the frequency domain.	Explain	Lecture notes,		Kirchhoff's laws
	3.10 Explain Impedance	Kirchhoff's laws	reference texts and		in the frequency
	combination	in the frequency	materials.		domain,
	3.11 Explain [i] Phase-	domain,	materiais.		impedance
	Shifters and [ii] ac	impedance			combination
	bridges.	combination			phase-shifters
	3.12 Define [i] series	phase-shifters			and ac bridges.
	resonance [ii] parallel	and ac bridges.			Solve numerical
	resonance.	Solve numerical			examples.
	3.13 Sketch the curve of I	example			examples.
		example			
	against f (I = current; f =				
	frequency) for [i] series				
	circuit [ii] parallel				
	circuit				
9.0 Gene	eral Objectives 4.0 Use ac theorem	ry and its applicatio	n to electrical solve circ	uit problems	I
	Circuit theorems in ac	Lecture with	Lecture notes,		
	analysis	solved examples	reference texts and		
	4.1 Explain superposition		materials.		
	theorem as applied to				
	ac circuits with ac				
	sources and reactive				
	components.				
	4.2 Explain Thevenin's	Derive			Direct the
	theorem as applied to ac	Thevenin's and			students to
	circuits	Norton's			derive
	4.3 (i) Describe Thevenin's	theorem as			Thevenin's and

 equivalent circuit (ii) obtain the Thevenin's equivalent ac voltage source (iii) obtain the Thevenin's equivalent impedance. 4.4 Explain theorem as applied to ac circuits. 4.5 Explain maximum power transfer theorem 4.6 Explain maximum power transfer theorem. 4.7 Determine the value of load impedance for which maximum power is transferred. 4.8 Explain the following theorems: (i) Millman's Theorem; (ii) Substitution Theorem; 	applied to ac circuits and Show the circuit for equivalent voltage and equivalent impedance for both theorems. Solved examples. Explain maximum power transfer theorem and determine the value of load impedance for which maximum power is transferred.	741 op amp, oscilloscope, 10 turn potential divider, any five (at least) of 1 k, 5 k, 9 k, 10 k, 47 k, 90k, 100 k, 900 k, and 10 M resistors, five each of 1 pm, 5 N, and	Determine the characteristics of an operational amplifier	Ask the students to determine the characteristics of an operational	Norton's theorem as applied to ac circuits and Show the circuit for equivalent voltage and equivalent impedance for both theorems. Solved examples. Ask students to explain maximum power transfer theorem and determine the value of load impedance for
and (iii) Reprocity Theorem.		10N capacitors		amplifier	which maximum power is
					transferred.
bjectives 5.0 Appreciate the	ac power analysis	Digital Stars	Determine the	Direct the	Ask the
5.1 Explain the apparent and reactive power.		Digital Storage, oscilloscope (DSO)	transient	students to	Ask the students to
5.2 Determine power in ac		- NV6514 Kit	response of a	determine the	solve various
circuit involving [i]	Explain power in		series RC	transient	numerical
resistive circuit [ii]	ac circuits		circuit and	response of a	problems on ac
inductive circuit [iii]			understand the	series RC	power circuits.
reactive circuit [iv]			time constant	circuit and	
capacitive circuit			concept with	understand the	Direct the
5.3 Define [i] apparent	Define the following		dc Power	time constant	students to define the
power [ii] reactive power	following		Supply.	concept with	define the

 [iii] true power [iv] complex power. 5.4 Explain maximum average power transfer 5.5 Explain effective or rms value 5.6 Explain the conservation of ac power. 5.7 Define power factor and explain the significance of power factor. 5.8 Explain what is meant by the power triangle. 5.9 Explain power-factor correction. 5.10 Explain the applications of ac power. 	apparent power, reactive power, true power and complex power. Solve numerical examples. Define power factor and explain its significance.	Digital Storage Oscilloscope (DSO)	Determine the transient response of a series RL circuit and understand the time constant concept with ac Power Supply.	ac Power Supply. Direct the students to determine the transient response of a series RL circuit and understand the time constant concept with ac Power	following apparent power, reactive power, true power and complex power. Solve numerical examples. Instruct students to define power factor and explain its significance.
General Objectives 6.0 Determine ac resonance6.1 Define [i] series resonance [ii] parallel resonance.6.2 Sketch the curve of I against f (I = current; f = frequency) for [i] series circuit [ii] parallel circuit.6.3 Determine in terms of L and C the resonant frequency, f_o , of an ac circuit, where L is inductance and C is capacitance.6.4 Determine the inductance and the	Sketch curves and explain significance Lecture with solved examples.	Function generator (capable of 20 V, variable frequency), oscilloscope, inductor: (300) mH, capacitor: (0.001) μ F, resistor: (500) Ω .	Investigate resonance in RLC networks by determining the theoretical parameters of series and parallel networks, and comparing the theoretical results to experimental results.	Direct the students to investigate resonance in RLC networks by - determining the theoretical parameters of series and parallel networks, - comparing the theoretical results to experimental	Direct the students to solve various numerical problems on ac resonance circuits.

 6.5 Sketch the curve of impedance (Z) against frequency (f) for [i] series circuit [ii] parallel circuits. 6.6 Define Q - factor (i.e. Q = Quality) for [i] series connection [ii] parallel connection. 6.7 Calculate the resonant frequency and Q - factor of a series L - C - R circuit. 6.8 Define bandwidth for: [i] series connection [ii] parallel connection. 6.9 Calculate the following parameters in parallel L - C - R circuits with known Q - factors [i] the resistance of the inductor [ii] the dynamic 	Sketch and explain the curve of impedance (Z) against frequency (f) for series circuit and parallel circuits. Define Q - factor (i.e. Q = Quality) for series connection and parallel connections and Calculate the resonant frequency and Q - factor of a series L - C - R circuit. Lecture with examples	Inductor, capacitor, resistors, function generator, oscilloscope, multimeter/LCR meter, connecting wires, breadboard	Determine the behavior of a series LCR resonant circuit and to estimate the resonant frequency and Q-factor.	results. Direct the students to determine the behavior of a series LCR resonant circuit and to estimate the resonant frequency and	Ask the students to sketch the curve of impedance (Z) against frequency (f) for series circuit and parallel circuit. Ask students to define Q - factor (i.e. Q = Quality) for series connections and parallel connections and Calculate the resonant frequency and Q - factor of a series L - C - R circuit.
---	---	--	--	---	---

General Obj	ectives: 7.0 Translate the co	oncept of three phas	e ac circuits.			
7.1	Explain the meaning of a	Explain the	Three-phase dimmer	To study the	Direct the	Direct the
	three - phase circuit.	meaning of a	stat, ammeter (ac),	balanced	students to	student to
7.2	Distinguish between	three - phase	voltmeter (ac), multi-	three-phase	study the	explain the
	three - phase, three-wire	circuit.	function meter,	system for	balanced three-	meaning of a
	circuit and three phase,	Distinguish	rheostats (3-	star and delta	phase system	three - phase
	four-wire circuit.	between three -	number).	connected	for star and	circuit.
7.3	Explain [i] line current	phase, three- wire circuit and		load.	delta connected	Distinguish
	[ii] line voltage.				load.	between three - phase, three-wire
7.4	Determine power in	three phase.				circuit and three
	three-phase circuit.					phase.
7.5	Calculate the following	Calculate the		To study the	Direct the	phase.
	parameters in a balanced	following	Three-phase dimmer	balanced	students to	Direct the
	three phase star-	parameters in a	stat, ammeter (ac),	three- phase	study the	students to
	connected (Y) load, that	balanced three	voltmeter (ac), multi-	system for	balanced three-	calculate the
	is connected to a three-	phase star-	function meter,	star and delta	phase system	following
	phase supply which has	connected	rheostats (3-	connected	for star and	parameters in a
	inductive reactance and	(<i>Y</i>) load that is	number).	three-phase	delta connected	balanced three
	resistance of known	connected to a		load.	three-phase	phase star-
	values for [i] impedance	three-phase			load.	connected
	per phase [ii] the phase	supply, which				(<i>Y</i>) load that is
	and line currents [iii] the	has inductive				connected to a
	total power consumed.	reactance and				three-phase
		resistance of				supply, which
		known values				has inductive reactance and
		for impedance per phase, the				resistance of
		phase and line				known values for
		and the total				impedance per
		power				phase, the phase
		consumed.				and line and the
						total power
						consumed.

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title Electromagnetism 1	Code: PYE 314	Contact Hours: 4 Hours/Week
Credit Unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 1	Semester: First	Practical: 2 Hours/week

Course main Goal: The course is designed to acquaint students with the concept of static electricity and magnetic potential and their applications.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Appreciate the concept of static electricity and its applications
- 2.0 Outline the effects of induced charges in dielectrics
- 3.0 Apprehend the concept of magnetism
- 4.0 Appreciate magnetic fields and magnetic potential
- 5.0 Appreciate forces and torques in a magnetic field
- 6.0 Apprehend the concept of three phase ac circuits

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Electromagnetism I Code: PYE 314 Credit Units: 2 Units **Course specifications:** Theoretical contents Practical Code: PYE 316 **Contact Hour:** 2 Hours/Week General Objective 1.0 Appreciate the concept of static electricity and its applications **Specific Learning** Week Teacher's Resources **Specific Learning Teacher's** Evaluation Activities Outcomes Activities Outcomes **Electrostatics:** Explain Van de Graff Students Assigned Demonstrate the 1.1 Explain the following electrostatic Generator action of the Van should be students to [i] electrostatic fields fields, Coulomb's Gold Leaf de involved in explore [ii] Coulomb's Law Law and electric Electroscope Graff generator. behavior of the [iii] electric Field electric Field intensity demonstration intensity (EFI) (EFI) of charges using

1.2 Explain electric field intensity EFI due to [i] a line and [ii] a surface charge1.3 Describe work done in moving a point charge in an electrostatic field1.4 Explain the term electric potential1.5 State properties of [i] potential function [ii] potential gradient1.6 State Gauss's law and explain application of Gauss's Law1.7 State [i] Maxwell's first law, [ii] Laplace's and [iii] Poison's equations.1.8 Explain [i] electric dipole [ii] dipole moment [iii] potential and [iv] electric field intensity EFI due to an electric dipole.1.9 Derive an expression for the [i] potential, [ii] electric field, of an electric dipole	Explain the term electric potential Explain Gauss's law and explain application of Gauss's Law Explain Maxwell's first law, Laplace's, Poison's equations and electric dipole, dipole moment and potential. Derive an expression for the [i] potential, [ii] electric field, of an electric dipole	Lecture notes, reference texts and materials.		the Van de Graff generator.	combs, glass rods etc and draw conclusions. Give assignment involving the calculation of; electrostatic potential at a point, potential at different points and stating the relation between electric potential gradient and electric field and electric intensity EFI due to an electric dipole.
Dielectrics and	Explain	Dielectric constant	Determine the	Direct the	Give assignment
Capacitance:	Conductors and	measurement	relative	students to	for
2.1 Describe the behavior	Insulators,	trainer (Nvis	permittivity of	determine the	determining
of an electric field in [i]	polarization of	6111), solid	dielectric medium	relative	capacitances of

Conductors and [ii]	dielectric	samples, mains		permittivity of	capacitors with
Insulators.	materials	cord, patch cord		dielectric	varying area,
2.2 Explain the behavior of		eora, paten eora		medium	plate
an Electric field inside	Explain			1110 41 41 11	separation and
a dielectric material.	permittivity,				dielectric
2.3 Explain polarization of	relative				constants.
dielectric materials.	permittivity (or				constants.
2.4 Define polarization	dielectric				
vector and dipole	constant electric				Assign
moment.	susceptibility				numerical
2.5 State the relationship	susceptionity				problems
between polarization	Explain				involving
vector and dipole	capacitance of a				computation
moment.	capacitor.	Lecture notes,			of polarization
2.6 Define permittivity,	cupuentor.	reference texts and			vector and
relative permittivity (or	Explain current	materials.			dipole moment.
dielectric constant),	density,	materials.			upole moment.
electric susceptibility.	conduction and				
2.7 State the dielectric	convection				
boundary conditions.	current densities				
2.8 Derive an expression	current actionies				
for energy stored in					
dielectrics.					
2.9 Define the capacitance					
of a capacitor.					
2.10 Derive expressions					Ask students to
for the capacitance of a		-do-			explain current
[i] parallel plate [ii]	Explain [i]	uo			density,
cylindrical [iii]	current density				conduction and
spherical capacitor.	[ii] conduction				convection
2.11 Derive an	and [iii]				current densities
expression for energy	convection				and state Ohm's
stored in a capacitor	current densities				law in point
2.12 Explain [i] current	and state Ohm's				form and
2.12 Explain [1] cullent		l	l		

	density [ii] conduction and [iii] convection current densities	law in point form and equation of continuity				equation of continuity
2	.13 State Ohm's law in	continuity				
	point form and equation					
	of continuity					
General O	bjectives 3.0 Apprehend the state of the sta	he concept of magn	etism			
3	.1.Explain static magnetic	Explain	dc power supply,	Measure the force	Direct the	Direct student to
	fields.	Biot-Savart's law	dynamometer,	acting on a	students to	explain
3	.2.State Biot-Savart's law.	and magnetic	multimeter, 2	current- carrying	Measure the	Biot-Savart's
3	.3.Define and explain	field intensity	magnets.	conductor and	force acting	law, magnetic
	magnetic field intensity	(MFI).		observe the	on a current-	field intensity
	(MFI).			induction of	carrying	(MFI),
3	.4.Explain and derive	Derive		electromotive	conductor and	Maxwell's
	expression for [i]	expression for		force in a uniform	observe the	second equation
	magnetic field intensity	magnetic field		magnetic field.	induction of	and Ampere's
	due to a straight current	intensity			electromotive	law
	carrying filament [ii]	P 1 • 1			force in a	Paramagnetic.
	magnetic field intensity	Explain the			uniform	
	due to circular, square	derivation and			magnetic	
	and [iii] magnetic field	expressions for the field current	1	Determine and	field. Direct	
	intensity solenoid		dc power supply,		students to	Direct student to
	current carrying wire	carrying conductor as in	dynamometer, multimeter, 2	verify the nature of	predict and	
5	.5.Derive expressions for the field current	[i] infinite linear	,	the magnetic force acting on a	verify the	explain magnetic flux and
	carrying conductor as	conductor	magnets.	current-carrying	nature of the	magnetic flux
	in [i] infinite linear	[ii] circular loop		wire when the wire	magnetic	density (B) and
	conductor [ii] circular	[iii] the solenoid		is placed in a	force acting	solve numerical
	loop [iii] the solenoid	[iv] Toroid		magnetic field.	on a current-	problems
	[iv] Toroid (Circular	(Circular		magnetic field.	carrying	providins
	solenoid)	solenoid)			wire when the	
3	.6.Explain magnetic flux	solutional			wire is placed	
	and magnetic flux				in a magnetic	
	density (B)				field.	

		1	1	1	
 3.7. Relate between magnetic flux and magnetic flux density 3.8. Write an expression for the force on a moving charge in a magnetic field density. 3.9. Derive [i] Maxwell's second equation, [ii] Ampere's Law and state their applications: 3.10. Ampere's circuital law and its applications viz. 3.11. Describe magnetic field intensity due to an infinite sheet of current and a long current carrying filament. 3.12. Derive the point form of Ampere's circuital law. 3.13. State Maxwell's third equation. 3.14. Explain ferromagnetic diamagnetic and paramagnetic, diamagnetic and paramagnetic, and paramagnetic and paramagnetic and paramagnetic and 	Explain the derivation of [i] Maxwell's second equation, [ii] Ampere's law and state their applications. Describe magnetic field intensity due to an infinite sheet of current and a long current carrying filament and derive the point form of Ampere's circuital law.	Deflection magnetometer, circular coil, dc power supply, measuring scale.	Measurement of the magnetic field along the axis of a current carrying circular coil to verify Biot Savart law and to estimate the radius of the coil.	Direct the students to measure the magnetic field along the axis of a current carrying circular coil to verify Biot Savart law and to estimate the radius of the coil.	Direct the students to explain the derivation of Maxwell's second equation, and Ampere's law, stating their applications. Instruct the students to describe magnetic field intensity due to an infinite sheet of current and a long current carrying filament and derive the point form of Ampere's circuital law.
3.16. Explain the effects of strong non-uniform field on these materials.	Explain				Ask the students to explain

3.17. Describe how atoms of a diamagnetic material acquire induced magnetic dipole moments in direction opposite to an applied magnetic field.3.18. Define the magnetization vector m of a magnetic material.3.19. Explain qualitatively domains and curve point.3.20. Interpret the equation $B = B_o + B_m$ for various magnetic materials.	ferromagnetic diamagnetic and paramagnetic materials. List examples of ferromagnetic, diamagnetic and paramagnetic materials. Define the magnetization vector <i>m</i> of a magnetic material, explain qualitatively domains, and curve point. Interpret the equation $B = B_o + B_m$ for various magnetic materials.	-do-			ferromagnetic diamagnetic and paramagnetic behavior. List examples of ferromagnetic, diamagnetic and paramagnetic materials. Direct the students to define the magnetization vector <i>m</i> of a magnetic material, explain qualitatively domains, and curve point. Interpret the equation $B = B_o + B_m$ for various
					magnetic materials.
General Objectives 4.0 Appreciate n	nagnetic fields and	magnetic potential	L	1	
4.1 Explain magnetic force	Explain magnetic	Equipment set	Determine the	Direct the	Explain
on moving charges in a Magnetic field.	force on moving charges in a	electromagnetism, permanent magnet	direction of the Lorentz	students to determine the	magnetic force on moving
4.2 Write an expression for the Lorentz force experienced by [i] a	Magnetic field Explain	with adjustable pole spacing, 1 dc	force. - Measure the force as a function	direction of the Lorentz force.	charges in a Magnetic field

	current element in a	differential	power supply 0 –	of the	- Measure the	
	magnetic field [ii] a	current loop as a	20 V, 0 - 5 A (230)	current.	force as a	Explain
	straight and a long	magnetic dipole	V, 50/60 Hz) or	- Measure the	function of	differential
	current carrying	and its limitations	dc power supply	force as a function	the	current loop as a
	conductor in a magnetic	and Gauss Law	0 - 20 V, 0 - 5 A	of the	current.	magnetic dipole
	field [iii] Force	of magnetism	(115 V, 50/60 Hz),	effective length of	- Measure the	and its
	between two straight		Pair of safety	the conductor.	force as a	limitations and
	long and parallel	Explain	5	- Measure the	function of	Gauss Law of
	current carrying	Neumann's	experimental	force as a function	the	magnetism
	conductors	formulae and	Leads, 75cm,	of the	distance	
	4.3 Derive an expression	Stokes' theorem	red/blue.	distance between	between the	
	for magnetic field of a			the pole shoes of	pole shoes of	Explain
	magnetic dipole.			the permanent	the permanent	Neumann's
	4.4 Explain the term [i]			magnet.	magnet.	formulae and
	magnetic dipole and [ii]					Stokes' theorem
	dipole moment.					
	4.5 Describe a differential					
	current loop as a	D 1				
	magnetic dipole.	Describe a				Ask students to
	4.6 Explain magnetic	differential				describe a
	potential and its	current loop as a				differential
	limitations.	magnetic dipole				current loop as a
	4.7 Explain vector	and explain				magnetic dipole
	magnetic potential and its properties.	magnetic potential and its				and explain
	4.8 State Gauss Law of	limitations				magnetic potential and its
	magnetism	minitations				limitations.
	4.9 Define Inductance of an					mintations.
	inductor.					
	4.10Derive an expression					Instruct the
	for the inductance of an		Lecture notes,			students to
	inductor	Derive an	reference texts and			derive an
	4.11Derive an expression	expression for the	materials.			expression for
	for the energy stored in	inductance of an				the inductance
L		l				

an inductor.	inductor and for				of an inductor
4.12Explain self and	the energy stored				and for the
mutual inductance.	in an inductor.				energy stored in
4.13Explain Neumann's					an inductor.
formulae.					Solve numerical
4.14Explain the					problems.
determination of [i]					
self-inductance of a	Explain the				Ask the students
solenoid [ii] toroid and	determination of				to explain the
[iii] mutual inductance	[i]				determination of
between a straight long	self-inductance of	-do-			self-inductance
wire and a square loop	a solenoid [ii]				of a solenoid,
wire in the same plane.	toroid and [iii]				toroid and
4.15Explain energy stored	mutual				mutual
and energy density in a	inductance				inductance
magnetic field.	between a				between a
4.16Define the curl of a	straight long wire				straight long
vector.	and a square loop				wire and a
4.17Explain magnetic	wire in the same				square loop wire
vector potential.	plane				in the same
4.18State Stokes' theorem					plane
General Objectives 5.0 Appreciate	forces and torques in	n a magnetic field			
5.1 Describe magnetic	Explain magnetic	Constant current	Determine the	Direct the	Ask the students
forces on particles.	forces on	Power supply DC	magnetic field	students to	to explain
5.2 Explain the combined	particles,	0-16 V, 5 Amp,	variation along the	determine the	magnetic forces
effects of electrical and	magnetic force on	Digital Gauss	axis of a circular	magnetic field	on particles,
magnetic fields.	a current element	meter with Axial	coil and a	variation	magnetic force
5.3 Explain magnet force	and magnetic	Hall Probe	Helmholtz coil.	along the axis	on a current
on a current element.	moment of a	(Transducer),		of a circular	element and
5.4 Derive expressions for	planar coil	current carrying		coil and a	magnetic
the force and torque on		coil with 390 turns		Helmholtz	moment of a
coils.		(N), 1 diameter		coil	planar coil
5.5 Calculate the force on a		150 mm, 1 support			
current carrying		base and stand, 1			

conductor		deflection			[
5.6 Explain magnetic		compass, 1			
moment of a planar coil		multimeter,			
		onnecting leads			
General Objectives 6.0 Apprehend t	-	-			
6.1 Estimate the field in a long cylindrical solenoid having n turns per unit length of thin wire carrying current <i>I</i> .6.2 Derive the total field inside the solenoid as $B = \mu_o (H + M)$ where $\mu_o =$ permeability of free space and <i>M</i> is magnetization vector.6.3 Explain magnetic susceptibility and permeability of various materials.6.4 Interpret the relation $B = \mu_o (H + M)$ for magnets.6.5 List the materials used in making magnets (permanent and temporary).6.6 Derive the magnetic field inside a toroid.6.7 Calculate the field in the gap of a particular	Take students through the derivation of a field in a long cylindrical solenoid having n turns per unit length of thin wire carrying current <u>I</u> . Explain magnetic susceptibility and permeability of various materials in the derivation above. Explain the materials that can be used in making magnets (permanent and temporary).	1 large solenoid of about 500-600 turns (of 20 s.w.g enameled copper wire) and of diameter c. 5cm, 2 ammeter (5 amp), 2 accumulator (or bench) source of supply, 2 controlled rheostat, 2 depression key K, 2 search coil of expt. 96, plug-in resistance box, ballistic galvanometer with lamp and scale stand to support search coil,2 meter rule	Determine the magnetic field variation along the axis of a solenoid.	Direct the students to determine the magnetic field variation along the axis of a solenoid	Direct the students to explain magnetic susceptibility and permeability of various materials in the derivation above. Direct the students to explain the materials that can be used in making magnets (permanent and temporary).
electromagnet. 6.8 State the relationship		1 deflection	Measure the magnetic field	Direct the students to	

 between <i>B</i> and <i>H</i>. 6.9 Draw the <i>B</i> – <i>H</i> curve for (i) soft iron (ii) hard steel. 6.10 Explain the making of permanent magnets. 6.11 Calculate the total flux from a pole of a magnet given the flux density and the dimensions of the magnet's pole surface. 	State the relationship between <i>B</i> and <i>H</i> and draw the B - H curve for (i) soft iron (ii) hard steel.	magnetometer, 1 circular coil, 1 dc power supply, and measuring scale	along the axis of a current carrying circular coil to verify Bio-Savart's Law and estimate the radius of the coil.	Measure the magnetic field along the axis of a current carrying circular coil to verify Bio- Savart's Law and to estimate the radius of the coil.	Instruct the students to state the relationship between <i>B</i> and <i>H</i> and draw the B - H curve for (i) soft iron (ii) hard steel.
---	--	--	--	--	--

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title Introduction to Solid State Physics	Code: PYE 315	Contact Hours: 2 Hours/Week
Credit Unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 1	Semester: First	Practical: 0 Hours/week

Course main Goal: The course is designed to acquaint students with the fundamental concepts of solid-state physics and its applications.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Comprehend crystals, lattices, and symmetry
- 2.0 Comprehend crystal diffraction and reciprocal lattice
- 3.0 Comprehend free electron theory of solids
- 4.0 Comprehend band theory of solids and semiconductors
- 5.0 Comprehend the concepts of dielectrics and its related properties
- 6.0 Comprehend superconductors: theory and devices

		PLOMA SCIENCE	LABORAT	ORY TECH	NOLOGY	(PHYSICS WITH
ELECTR	,					
	tle: Introduction to Solid State Physics		Code: PYE 315		Credit Units: 2 Units	
	ecifications: Theoretical contents		Practical Co	ode: None	Contact Ho	urs: 2 Hours/Week
	Dbjective 1.0 Comprehend crystals, lattice		r		-1	
Week	Specific Learning Outcomes	Teacher's Activities	Resources	Specific Learning	Teacher's Activities	Evaluation
				Outcomes		
	 1.1 Distinguish between crystalline and amorphous solid 1.2 Explain the following [i] crystal and [ii] crystal lattice. 1.3 Explain lattice points and space points 1.4 Explain the following [i] basis and crystal structure [ii] unit cell and primitive cell 1.5 Explain crystal systems and crystal symmetry (symmetry elements in crystals). 1.6 Explain the Bravais Lattices. 	Lecture with examples Distinguish between crystalline and amorphous solid, and explain [i] crystal and [ii] crystal lattice.	Lecture notes and reference texts.			Ask students to distinguish between crystalline and amorphous solid, and explain [i] crystal and [ii] crystal lattice.
	 1.6 Explain the blavars Eathees. 1.7 Explain the following [i] simple cubic crystal system, [ii] fcc crystal system, [iii] body-centered cubic [iv] three dimensional lattice Types 1.8 Explain crystal symmetry and symmetry operations (translational symmetry, rotational system, reflection and inversion) 1.9 Explain crystal direction and place 	Explain crystal symmetry and symmetry operations (translational symmetry, rotational system, reflection and inversion)	-do-			Ask students to explain crystal symmetry and symmetry operations (translational symmetry, rotational system, reflection and

1.10 Explain Miller Indices		Lecture	inversion)	
1.11 Describe inter planer spacing	Describe inter planer	notes and	Direct studen	ts to
1.12 State the important features of	spacing	reference	state the impo	
Miller indices of crystal planes.		texts.	features of M	iller
1.13 Obtain the relation between the	State the important		indices of cry	/stal
density of crystal material and the	features of Miller		planes and ob	otain
lattice constant in a cubic lattice.	indices of crystal		the relation	
1.14 Explain some important crystal	planes.		between the	
structure (Sodium Chloride			density of cry	/stal
(NaCl), Cesium Chloride (CeCl)),	Obtain the relation		material and	the
Hexagonal Close Packed (hcp),	between the density of		lattice consta	nt in
Diamond, Zinc Sulfide (ZnS),	crystal material and		a cubic lattice	e
Perovskite etc).	the lattice constant in a			
1.15 Explain the Wigner Seitz cell.	cubic lattice			
1.16 Explain quasi and liquid crystals.				
1.17 Describe allotropy and				
polymorphism				
1.18 Explain imperfections in crystals				
(thermal vibrations, point defects,				
vacancies, interstitials, Schottky		-do-	Direct studen	ts to
defects and Frenkel defects,			explain	
compositional defects, electronics			imperfections	
defects).	Explain imperfections		crystals (there	
1.19 Explian [i] line imperfections, [ii]	in crystals (thermal		vibrations, po	
screw dislocation surface	vibrations, point		defects, vacar	ncies,
imperfections, [ii] Burger's vector	defects, vacancies,		interstitials,	
1.20 Explain [i] external surface	interstitials, Schottky		Schottky defe	ects
imperfection and [ii] internal	defects and Frenkel		and Frenkel	
surface imperfections (grain	defects, compositional		defects,	
boundaries, tilt boundaries, twin	defects, electronics		compositiona	
boundaries).	defects).		defects, electr	ronics
1.21 Explain [i] stacking defect and [ii]			defects).	
volume defect.				

General Objecti	ves 2.0 Comprehend crystal diffra	action and reciprocal lat	ttice	
2.1	Explain X-ray diffraction	Lecture with	Lecture	Ask students to
2.2	Explain diffraction of waves by	examples	notes and	explain X-ray
	crystal lattice.		reference	diffraction and
2.3	Explain [i] Laue's concept of X-	Explain X-ray	texts.	diffraction of
	ray diffraction and [ii] Bragg's	diffraction and		waves by crystal
	concept of X-ray diffraction.	diffraction of waves		lattice
2.4	State Bragg's law and prove the	by crystal lattice		
	Bragg's law.			
2.5	State Bragg's law in reciprocal			
	space.			
2.6	Explain Bragg's X-ray	Explain [i] Laue's		
	spectrometer	concept of X-ray		
2.7	Explain the various diffraction	diffraction and [ii]		
	methods [i] Laue method, [ii]	Bragg's concept of X-		
	rotating crystal method and [iii]	ray diffraction.		
	powder method			Direct students to
2.8	Explain neutron diffraction and	State Bragg's law and		explain [i] Laue's
	electron diffraction techniques	prove the Bragg's law.		concept of X-ray
	for studying crystal structure.			diffraction [ii]
2.9	Explain [i] reciprocal lattice [ii]	State Bragg's law in	-do-	Bragg's concept of
	reciprocal lattice vectors [iii]	reciprocal space and		X-ray diffraction
	Reciprocal lattice of bc, sc and	explain Bragg's X-ray		[iii] state and
	fcc.	spectrometer.		prove the Bragg's
2.10	1			law, [iv] state
	reciprocal lattice	Solve numerical		Bragg's law in
2.11	1	problems		reciprocal space
	electron diffraction techniques	using the expressions		and explain
	for studying crystal structure.	stated		Bragg's X-ray
2.12	1 1 1			spectrometer.
	lattice			
2.13	1 1			
	monoclinic crystal			Obtain reciprocal
2.14	Construction of reciprocal lattice			lattice of simple

2.15 2.16 2.17	vectors: Obtain reciprocal lattice of simple cubic crystal and reciprocal lattice to fcc crystal.	Obtain reciprocal lattice of simple cubic crystal and reciprocal lattice to fcc crystal.	-do-	cubic crystal and reciprocal lattice to fcc crystal. Explain the diffraction condition in reciprocal lattice
	in reciprocal lattice system.	Explain the diffraction		system and explain
	Explain the properties of reciprocal lattice.	condition in reciprocal lattice system and		the properties of reciprocal lattice.
2.19	Explain the concept of a Brillouin zones	explain the properties of reciprocal lattice.		
2.20	Explain Brillouin zones in two dimensions.	1		
General Objecti	ve 3.0 Comprehend free electron th	eory of solids	· · ·	
3.1	Explain the classical free electron theory of metals	Lecture with examples	Lecture notes and	Ask students to explain the
3.2	Explain the classical theory of electric conduction	Ĩ	reference texts.	classical free electron theory of
3.3	Explain the temperature dependence of electrical resistivity	Explain the classical free electron theory of metals and classical theory of electric	lexis.	metals and classical theory of electric
3.4	Explain the drawbacks of classical theory [i] heat capacity of electron gas, [ii] computation of mean free path and [iii] relation between electrical conductivity and thermal conductivity (Wiedemann-Franz law) Explain relaxation time, collision	conduction Explain the temperature dependence of electrical resistivity		conduction. Direct the students to explain the temperature dependence of electrical resistivity
	time and mean free path.	Explain the drawbacks		Direct the students
3.6 3.7	Explain Fermi energy Explain Fermi-Dirac statistics	of classical theory [i] heat capacity of		to explain the drawbacks of

3.1	 state and Fermi energy Explain the Fermi distribution function. Obtain the heat capacity of free electron gas. Obtain the expression for the mean of electron gas at absolute zero. 	electron gas, [ii] computation of mean free path and [iii] relation between electrical conductivity and thermal conductivity (Wiedemann-Franz law)	-do-	classical theory [i] heat capacity of electron gas, [ii] computation of mean free path and [iii] relation between electrical conductivity and thermal conductivity (Wiedemann-
5.1	2 Explain the effect of temperature on Fermi distribution function.			Franz law)
General Object	tives 4.0 Comprehend band theory	of solids and semicondu	ictors	
4.1 4.2 4.3 4.4 4.5 4.6 4.7	 Explain the band structure of semiconductors Explain semiconductors Explain intrinsic semiconductors. Explain the effect of temperature on the conductivity of a semiconductor. Explain the statistics of electrons and holes in intrinsic semiconductors. Explain the effect of electrical conductivity to an intrinsic semiconductor. 	Lecture with examples Explain semiconductors and the band structure of semiconductor.	Lecture notes and reference texts.	Direct student to explain semiconductors and the band structure of semiconductor.
4.8	extrinsic semiconductors. Explain the statistics of extrinsic semiconductors.	Explain the statistics of extrinsic semiconductor sand derive the Fermi level in impurity	-do-	Ask students to explain the statistics of extrinsic semiconductor sand derive the

semiconductors.	semiconductors.		Fermi level in
4.11 Derive the general equation for an	senneonauerors.		impurity
impurity semiconductor.			semiconductors.
4.12 Explain the Fermi level in an n-			senneonauetors.
type semiconductor at very low			
temperature.			
4.13 Derive the theory of [i] n-type			
semiconductors and [ii] p-type			
semiconductors and [11] p type			
4.14 Explain the variation of carrier			
concentration with temperature.			
4.15 Explain conductivity in extrinsic			
semiconductors.			
4.16 Explain the mechanism of current	Explain the	Lecture	Direct students to
conduction in semiconductors: [i]	mechanism of current	notes and	explain the
current flow in a biased n-type	conduction in	reference	mechanism of
semiconductor and [ii] current	semiconductors: [i]	texts.	current conduction
flow in a biased p-type	current flow in a		in semiconductors:
semiconductor.	biased n-type		[i] current flow in
4.17 Explain generation and	semiconductor and [ii]		a biased n-type
recombination in semiconductors.	current flow in a		semiconductor and
4.18 Explain minority carrier lifetime	biased p-type		[ii] current flow in
4.19 Explain mobility of current	semiconductor.		a biased p-type
carriers in semiconductors.			semiconductor.
4.20 Explain drift and diffusion			
4.21 Explain and derive Einstein			
relation i.e. relation between			
diffusion coefficient and mobility			
of a charge carrier.			
4.22 General study of excess carrier			
movement: [i] the continuity		-do-	
equation [ii] net recombination			
rate [iii] rate of increase due to			
drift [iv] rate of increase due to			

1:00	Section and full diffusion 1				1
	usion and [v] diffusion length.				
	blain Hall effect and determine Hall coefficient.	Euplain Hall affect			Ask students to
	scribe the application of Hall	Explain Hall effect, determine the Hall			
4.24 Des effe	11	coefficient and			Explain Hall
		describe the			effect, determine the Hall coefficient
	te the advantages of				
	niconductor devices.	application of Hall effect.			and describe the
-	plain p-n junction and the	effect.			application of Hall
	ential barrier at a p-n junction.				effect.
	plain width of depletion layer				
	he p-n junction.	F 1-i			
-	plain volt-Ampere	Explain p-n junction			
	racteristics of the p-n junction. blain the application of voltage	and the potential	Lecture		Direct students to
	oss a p-n junction [i] forward	barrier at a p-n junction.	notes and		explain p-n
	sing [ii] reverse biasing.	junction.	reference		junction and the
	blain V-I characteristics of a p-		texts.		potential barrier at
-	inction.		lexis.		a p-n junction.
	rive [i] rectifier equation and	Explain width of			a p-ii junction.
	continuity equation	depletion layer of the			
	plain the various types of diode	p-n junction and volt-			
-	their applications: [i] Zener	Ampere characteristics			Direct explain
	de [ii] varactor diode	of the p-n junction			width of depletion
	breakdown diode [iv] tunnel	or the p in junction			layer of the p-n
E 3	de [v] photo diode, [vi] light				junction and volt-
	itting diodes				Ampere
					characteristics of
					the p-n junction
General Objectives	5.0 Comprehend the concepts	of dielectrics and its rela	ated properties		juiteriou
	plain the concept of	Lecture with examples	Lecture		Ask students to
	electrics.	1	notes		Explain the
5.2 Ex	plain dielectric constant and	Explain the concept of	Reference		concept of
	sceptibility.	dielectrics, dielectric	texts		dielectrics,
5.3 De	erive Gauss law in the presence	constant and			dielectric constant

	of the dielectric.	susceptibility.		and susceptibility.
5	5.4 Explain dipole moment and			
	polarization.			
5	5.5 Explain the microscopic concept			
	of polarization (i.e. dielectric			Direct students to
	polarization.			explain the
5	5.6 Explain the following [i]	Explain the following		following [i]
	dispersion of dielectric	[i] dispersion of		dispersion of
	polarization [ii] electronic	dielectric polarization		dielectric
	polarization [iii] ionic	[ii] electronic		polarization [ii]
	polarization [iv] orientation	polarization [iii] ionic		electronic
	polarization and [v] space charge	polarization [iv]		polarization [iii]
	polarization.	orientation		ionic polarization
5	5.7 State Lan gevin theory of	polarization and [v]		[iv] orientation
	polarization in polar dielectrics.	space charge		polarization and
5	5.8 Explain molecular theory of	polarization.		[v] space charge
	induced charges in a dielectric			polarization.
5	Explain capacitance of a parallel		-do-	r · · · · · ·
	plate capacitor and derive	Explain molecular		
	Lorentz field.	theory of induced		
5	5.10 Derive the equation for field of	charges in a dielectric		
	dipoles inside Cavity.			Direct students to
5	5.11 Explain the molecular	Explain capacitance of		explain
	description of polarization	a parallel plate		capacitance of a
5	5.12 Determine the Clausius –	capacitor and derive		parallel plate
	mossotti relation.	Lorentz field and		capacitor and
5	5.13 Determine the relation between	derive the equation for		derive Lorentz
	dielectric constant and refractive	field of dipoles inside		field and derive
	index (Lorentz-Lorenz formula).	Cavity.		the equation for
5	E.14 Explain the following [i] ferro			field of dipoles
	electricity and [ii] anti-ferro	Explain capacitance of		inside Cavity.
	electricity.	a parallel plate		
	5.15 Explain piezoelectricity	capacitor and derive		
5	5.16 Explain dielectrics in alternating	Lorentz field and		

	fields and describe the properties of dielectrics in alternating fields.	derive the equation for field of dipoles inside Cavity.			
5.17	⁷ Explain the complex dielectric constant and dielectric loss.				
5.18	8 Explain ionic polarization as a				
5.10	function of frequency.				
5.19	Obtain the complex dielectric				
5.20	constant of nonpolar solids.Explain dipolar relaxation.				
	Explain the dipole theory of				
0.21	ferro electricity.		Lecture		
5.22	2 Describe the classification of		notes and		
	ferroelectric materials		reference		
5.23	Explain absorption of energy and		texts		
	dielectric losses.				
5.24	Describe the effects of dielectrics				Direct students to
	[i] dielectric relaxation [ii]				explain the effects
	dielectric absorption and [iii]	Explain the effects of			of dielectrics [i] dielectric
	dielectric breakdown [iv] intrinsic breakdown [v] thermal	dielectrics [i] dielectric relaxation			relaxation [ii]
	breakdown [v] discharge	[ii] dielectric			dielectric
	breakdown [vi] discharge	absorption and [iii]			absorption and [iii]
	electrochemical breakdown.	dielectric breakdown			dielectric
5.25	Explain dielectric losses and	[iv] intrinsic			breakdown [iv]
	dielectric loss angle.	breakdown [v] thermal			intrinsic
5.26	Explain total and specific	breakdown [vi]			breakdown [v]
	dielectric losses.	discharge breakdown			thermal
5.27	1 1	and [vii]			breakdown [vi]
	requirements of good insulating	electrochemical			discharge
	materials and list some important	breakdown.			breakdown and
	insulating materials.				[vii]
					electrochemical
					breakdown.

General Objecti	ves: 6.0 Comprehend supercondu	ictors: theory and device	es	
6.1	Describe the concept of	Lecture with examples	Lecture	Ask the students to
	superconductivity.		notes	explain the
6.2	Explain the classification of	Explain the concept of	Reference	concept of
	superconductors	superconductivity and	texts	superconductivity
6.3	State the basic properties of	state the basic		and state the basic
	superconductors.	properties of		properties of
6.4	List some applications of	superconductors.		superconductors.
	superconductivity.			
6.5	Explain the effect of Joule			
	heating on superconductor.	Give account of the		Direct students to
6.6	Give account of the mechanism	mechanism of		give account of the
	of superconductors.	superconductors and		mechanism of
6.7	Describe the effect of [i]	explain the effect of [i]		superconductors
	magnetic field [ii] ac resistivity	magnetic field [ii] ac		and explain the
	and [iii] critical current on	resistivity [iii] critical		effect of [i]
	superconductors.	current on		magnetic field [ii]
6.8	Explain flux exclusion: the	superconductors and		ac resistivity [iii]
	Meissner effect	explain flux exclusion:		critical current on
6.9	Explain thermal properties	the Meissner effect		superconductors
	effects on superconductors [i]			and explain flux
	entropy, [ii] specific heat, [iii]		-do-	exclusion: the
	thermal conductivity, and [v]			Meissner effect
	acoustic attenuation.			
6.10	Describe energy gap in			
C 11	superconductors.			Direct students to
6.11	Explain [i] isotope and [ii]			explain the
	mechanical effects as related to			concept of London
(10)	superconductors.			theory, derive the
6.12	1 1	Explain the concept of		first London
	theory and derive the first and	London theory, derive		equation, second
(1)	second London equations.	the first London		London equations,
6.13	Explain London penetration	equation, second		and explain
	depth.	London equations, and		London

6.14	1 1 1	explain London		penetration depth.
	of the London penetration depth.	penetration depth.		
6.15	Describe the behavior of	Explain temperature		
	superconductors in ac fields	dependence of the		
6.16	Explain the thermodynamics of	London penetration		Ask students to
	superconductors.	depth.		explain the
6.17	Describe the concept of Bardeen-			concept of
	Cooper Schrieffer (BSC) theory.			Bardeen-Cooper
6.18	Explain [i] coherence length [ii]		-do-	Schrieffer (BSC)
	BSC ground state and [iii] the	Explain the concept of		theory and explain
	BSC theory in a capsule.	Bardeen-Cooper		[i] coherence
6.19	Explain the theory of Josephson	Schrieffer (BSC)		length [ii] BSC
	effect.	theory and explain [i]		ground state and
6.20	Explain ac Josephson effect	coherence length [ii]		[iii] the BSC
		BSC ground state and		theory in a
		[iii] the BSC theory in		capsule.
		a capsule.		

HND I SEMESTER 2

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH **ELECTRONICS**)

Course Title: Thermodynamics	Code: PYE 321	Contact Hours: 4 Hours/Week
Credit Units: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 1	Semester: Second	Practical: 2 Hours/week

Course main Goal: The course is designed to acquaint students with the concept of the laws of thermodynamics and its applications

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Apprehend the first law of thermodynamics
- 2.0 Apprehend the second law of thermodynamics
- 3.0 Outline the processes by which changes in thermodynamics system are affected
- 4.0 Apprehend the first Properties law of thermodynamics of pure substances
- 5.0 Apprehend the third law of thermodynamics

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH **ELECTRONICS**)

Course	Course Title: ThermodynamicsCode: PYE 321Credit Unit		Credit Units:	s: 2 Units		
Course	specifications: Theoretical conter	nts	Practical Code:	: PYE 327	Contact Hours: 2 Hours/Week	
General	l Objectives: 1.0 Apprehend the f	first law of thermody	namics			
Week	Specific Learning Outcomes	Teacher's	Resources	Specific	Teacher's	Evaluation
		Activities		Learning	Activities	
				Outcomes		
	Basic Concepts of	Lecture and give	Lecture notes			Teacher
	Thermodynamics	numerical	and reference			assesses/rates
	1.1 Explain the terms: [i] state	examples and	texts.			students'
	[ii] equilibrium [iii]	assignments				understanding of
	processes [iv] cycles.					first law from

1.2 State temperature and the	Explain the terms:		explanation
Zeroth law of	[i] state [ii]		of terms.
thermodynamics	equilibrium [iii]		
1.3 Write the ideal-gas equation	processes [iv]		
of state.	cycles. State and		
1.4 Define specific heat	derive temperature		
capacity.	and the Zeroth law		Data ata lanta?
1.5 Explain the concept of work	of thermodynamics		Rate students'
done by an expanding gas.	7		understanding of
1.6 Interpret the ratio of specific			specific heat
heat capacities, i.e.	Prove that	-do-	capacity, the concept
$C_p/C_v = \hat{W}$ where C_p , C_v	$C_{v} - C_{v} = R$	-00-	of work done by an
are specific heat capacities at constant pressure and	where R is gas		expanding gas and Interpret the ratio of
	constant and		specific heat
volume respectively, Ŵ is a constant.	calculate the values		capacities by
1.7 State the first law of	of $\hat{W} = C_p/C_v$ for		quiz questions.
thermodynamics.	a gaseous mixture.		quiz questions.
1.8 Prove that $C_p - C_v = R$	The gases are		Direct the students to
where <i>R</i> is gas constant.	assumed to be		state the first law of
1.9 Calculate the values of	ideal. C_p , is specific		thermodynamics,
$\hat{W} = C_p / C_v$ for a gaseous	heat capacity at		prove that
mixture. The gases are	constant pressure,		$C_{v} - C_{v} = R$ and
assumed to be ideal. C_p , is	C_{v} is specific heat		Calculate the values
Ľ	capacity at constant		of $\hat{W} = C_p / C_v$ for
specific heat capacity at	volume.		a gaseous mixture.
constant pressure, C_{ν} is specific heat capacity at			a Subcous InfAture.
constant volume.			
General Objectives 2.0 Apprehend the s	econd law of thermo	lynamics	
Second Law of		Lecture notes	Students should be
Thermodynamics	Lecture with the	and texts.	guided to establish
2.1 Explain heat engines,	help of sketch		the equivalence of
refrigerators, and heat	graph		different statements

pump.			of Second Law.
2.2 Describe thermal-ene	ergy		
reservoirs.			
2.3 State the second law	of		
thermodynamics.			
2.4 State the Kelvin-Plan	nck		
statement of the seco	ond law Lecture		
thermodynamics.			
2.5 Explain Carnot cycle			
2.6 Explain the second la	aw		
using working cycles	s on the State the Clausius		
P-V diagram for heat	t statement of the		Direct the students to
engines and refrigera	tors. second law		explain Carnot cycle
2.7 Derive expressions fe		-do-	and Second Law of
work done in a Carne	· · · · · · · · · · · ·		thermodynamics
engine; [ii] efficiency			using working cycles
Carnot engine.	Kelvin-Planck and		on the P-V diagram
2.8 State the Clausius sta	atement Clausius		for heat engines and
of the second law	statements.		refrigerators.
thermodynamics.			
2.9 Explain the Equivale			
the Kelvin-Planck an			
Clausius statements.	entropy change of		
2.10 Explain the equival	-		
the ideal gas tempera			Students are guided
and Kelvin temperat			by teacher to
2.11 Describe reversible	and		verbally distinguish
irreversible process.			between reversible
2.12 Explain why a reve		Lecture notes	and irreversible
process is impossible		and texts.	processes.
reality.	examples		
2.13 Explain General se			
law limitations for h			
engines, refrigerator	rs, and		

 heat pumps. 2.14 Explain the concept of entropy. 2.15 Explain the increase of entropy principles. 2.16 Describe the entropy change of pure substances. 2.17 Explain isentropic processes. 2.18 Explain entropy change of [i] solids [ii] liquids [iii] ideal gases. 2.19 Explain the second law in terms of entropy change for heat engines and refrigerators. 2.20 State the <i>Tds</i> equations. 2.21 Describe the Joule-kelvin effect. 2.22 Obtain conditions for Joule-kelvin effect, using the <i>Tds</i> equation and inversion curves. 2.23 Describe the process of liquefaction of gas, using Joule- Kelvin effect. 	State the <i>Tds</i> equations. Describe the Joule-kelvin effect and obtain conditions for Joule-kelvin effect, using the <i>Tds</i> equation and inversion curves.	-do- Lecture notes and texts.	namics system are affected	Students are guided to explain the concept of entropy and establish the equivalence of different statements of Second Law. Students are to be given some exercises on the second law in terms of entropy change for heat engines and refrigerators as tutorial to enhance better understanding. Ask students to state the <i>T ds</i> equations. Describe the Joule- kelvin effect and obtain conditions for Joule-kelvin effect, using the <i>T ds</i> equation and inversion curves
3.1 State how processes affect	Lecture with the	Lecture notes		Ask the student to
changes in a thermodynamic system.	help of sketch graph	and texts.		distinguish between flow and non-flow

3.2 Distinguish			processes.
	w processes.		
	ondition that must		
be satisfied	by steady flow		
processes.	Distinguish		Rate students'
3.4 Derive the st	eady flow energy between flow and		understanding of
equation (SF	TEE) non-flow process	es	steady flow energy,
Q = W = m	$(h_2 - h_1)$ and State the		by quiz questions
	+ $\frac{m^2}{2000}(c_2^2)$ condition that mu be satisfied by	ıst	and apply the steady
	$+\frac{1}{2000}$ be satisfied by		– flow energy
	$-c_1^2$ steady flow	-do-	equation to boiler,
	$- \frac{c_1^2}{mg} + \frac{mg}{1000} (z_2)$ steady flow processes.		condensers, turbines
	1000 \ 2		and compressors.
where $h = arc$	$-z_1$)		
where $h = \text{spec}$ m = mass flow	157		
control volume			
z = height abc			Direct the students to
level; $g = \operatorname{acc}$		T (apply the non-flow
W = Rate at w	eat transfer rate;	Lecture notes	equation to constant
W = Rate at W done.	nich work is	and texts.	volume processes;
	toody flow		constant pressure
3.5 Apply the s	ation to boiler,		processes; adiabatic
0, 1	, turbines and		processes; and polytropic processes.
compresso	·		porytropic processes.
-	non-flow energy Lecture with		
equation U ₂			
_	the final energy		
5	U_1 is the initial		
	system; Q is the		
1 5	eat transferred		
and W is the			
3.7 Apply the r	1011-110W		

equation to: [i] constant volume processes; [ii] constant pressure processes; [iii] adiabatic processes; and [iv] polytropic processes.					
General Objectives 4.0 Apprehend to the	first properties law	of thermodynam	ics of pure substa	inces	
 4.1 Define internal energy, U. 4.2 Define enthalpy, H = U + PV 4.3 Explain internal energy, enthalpy, and specific heats of ideal gases 4.4 Explain internal energy, enthalpy, and specific heats of solids and liquids. 4.5 Describe how the change in enthalpy for an isobaric process is equal to the heat transferred. 4.6 Apply enthalpy to: [i] throttling process; and [ii] a 	Define internal energy, U enthalpy, H = U + PV and explain internal energy, enthalpy, and specific heats of ideal gases	Lecture notes and texts.			Students are to be given some exercises on internal energy, enthalpy and specific heat of ideal gases tutorial to enhance better understanding.
pure substance undergoing a reversible process. 4.7 Define the Helmholtz function, $F = U - T_s$. 4.8 Explain how the changes of Helmholtz function during an isothermal process equal the work done on the system. 4.9 Define the Gibbs's function, $G = U - T_s + PV$. 4.10 Derive the Maxwell's	Explain how the changes of Helmholtz function during an isothermal process equal the work done on the system. Define the Gibbs's function, $G = U - T_s +$	-do-			Ask the how the changes of Helmholtz function during an isothermal process equal the work done on the system. Direct students to define the Gibbs's

equations on the <i>Tds</i> equations by applying the thermodynamic potentials. 4.11 Determine the principal specific heat capacities using Maxwell's equation.	<i>PV</i> and derive the Maxwell's equations on the <i>Tds</i> equations by applying the thermodynamic potentials.		function, $G =$ $U - T_s + PV$ and derive the Maxwell's equations on the Tds equations by applying the thermodynamic potentials. Solve numerical problems.
General Objectives 5.0 Apprehend the th	nird law of thermody	namics	
Third Law of			
Thermodynamics	Lecture with		Direct the students to
5.1 State the third law of thermodynamics.	examples		explain Carnot cycle and Third law of
5.2 List the elementary physical consequences of the third law.	State the Third law of thermodynamics and list the		thermodynamics and state elementary physical
5.3 Explain the unattainability of absolute zero Derive.	elementary physical consequences of the		consequences of the third law. Solve
5.4 Describe the mathematical explanation of the third law.	third law.		numerical problems
5.5 Describe the applications of the third law of thermodynamics.			
5.5 Apply the third law to allotropic transformation and glasses.			

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Electromagnetism II	Code: PYE 322	Contact Hours: 4Hours/week
Credit Unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 1	Semester: Second	Practical: 2 Hours/week

Course main Goal: The course is designed to acquaint students with the concept of the principles of electromagnetic waves and their propagation in free space and matter

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Apply Principle of electromagnetic induction
- 2.0 Apply Maxwell's equations and their solutions
- 3.0 Outline the properties of electromagnetic waves and their propagation in free space and matter
- 4.0 Outline the propagation of high frequency signals along transmission lines
- 5.0 Outline the propagation of high frequency signal wave guides

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Electromagnetism II			Code: PYE 322		Credit Units: 2 Units		
Course specifications: Theoretical contents			Practical Code: PYE 327		Contact Hours: 2 Hours/Week		
General Objective 1.0 Apply principle of electromagnetic induction							
Week	Specific Learning Outcomes	Teacher's	Resources	Specific	Teacher's	Evaluation	
		Activities		Learning	Activities		
				Outcomes			
	Electromagnetic induction	Discuss the	Oscillator, function	Use Faraday's	The students	Direct the	
	1.1 State Faraday's law of	following laws of	generator, 5	Law to	should use	students to state	
	electromagnetic induction	electromagnetic	neodymium magnets,	determine the	Faraday's	and derive the	
	1.2 State Lenz's law of	induction: (i)	solenoid, Vernier	magnetic field	Law to	following	
	electromagnetic induction	Faraday's law	Magnetic Field	of a magnet	determine the	electromagnetic	

T	1 2 Europea Earodou's low	(ii) Long laws	Sangar Varian		magnatic field	laway Earsday?-
	1.3 Express Faraday's law and Lenz's law of	(ii) Lenz laws	Sensor, Vernier		magnetic field	laws: Faraday's
		Express the laws	Current probe, Vernier		of a magnet.	law and Lenz
	electromagnetic induction	above	computer interface,			laws
	mathematically	mathematically.	Vernier computer			
	1.4 Explain induced e.m.f. and		software and			
	induced current.	Explain induced	multimeter.			
	1.5 Derive an expression for	e.m.f. and induced				
	induced e.m.f. in [i] a rod	current.				Direct the
	moving in a magnetic					students to
	field, [ii] A rectangular coil	Show how to derive	Function Generator,	Demonstrate the	Demonstrate	explain induced
	[iii] circular coil, moving	an expression for	Oscilloscope, One	Faraday's Law	the Faraday's	e.m.f., induced
	in a magnetic field.	induced e.m.f. in [i]	large and two small	of	Law of	current and
	1.6 Explain practical	a rod moving in a	(with handles) coils,	electromagnetic	electromagnet	derive an
	applications of	magnetic field, [ii]	plastic triangles, T-	induction.	ic induction.	expression for
	electromagnetic induction	A rectangular coil	base, BNC connector			induced e.m.f. in
	in general of electrical	[iii] circular coil,	and graph paper.			a rod moving in
	power, and in betatron.	moving in a	Sensor-CASSY (1),		Ask the	a magnetic field,
	1.7 Deduce the differential	magnetic field.	U-core with yoke (1),	Determine the	students to	a rectangular coil
	form of Faraday's Law		Coils ($N = 500$ turnes,	properties of	Determine the	and circular coil,
	from the integral form.	Discuss practical	L = 2.2 mH (2),	magnetic	properties of	moving in a
	1.8 Explain self-inductance	applications of	Clamping device,	materials and	magnetic	magnetic field.
	and mutual inductance.	electromagnetic	Function generator	hysteresis loop	materials and	Solve numerical
	1.9 Derive expressions for	induction in general	S12 (1), 12 V DC	measurements	hysteresis	problems.
	self-inductance and mutual	of electrical power,			loop	
	inductance of circuits.	and in betatron.	power supplies (2),		measurements	
	1.10 Derive an expression for		STE resistor 1 Ω , 2W			Ask the students
	the energy stored in an	Explain how to	(1), Socket board			to deduce the
	inductor.	deduce the	section (1),			differential form
	1.11 and total magnetic energy	differential form of	Connecting lead, 50			of Faraday's
	of a system of currents.	Faraday's Law	cm (1), Connecting			Law from the
	1.12 Explain hysteresis losses	from the integral	leads, 100 cm (7), PC			integral form and
	in ferromagnetic materials	form.	with Windows 98 and			derive
	1.13 Draw the hysteresis loop		CASSY Lab software			expressions for
	for soft and hard magnetic	Explain self-				self-inductance

materials. 1.14 Explain energy product, and maximum energy product. 1.15 Solve numerical problems. General Objectives 2.0 Apply Maxwell'	-		Determine the B-H curve and to find out the values of coercivity, retentivity and saturation magnetization of experimental material. (Commercial Nickel).	Direct the students to determine the B-H curve and to find out the values of coercivity, retentivity and saturation magnetization of experimental material. (Commercial Nickel).	and mutual inductance of circuits. Direct students to derive an expression for the energy stored in an inductor and total magnetic energy of the system current. Direct the students to explain hysteresis losses in ferromagnetic materials and the hysteresis loop for soft and hard magnetic materials
2.1 State equation of	Show equation of	Lecture notes and			Ask the students
continuity.	continuity and	reference materials			to state the
2.2 Interpret the equation in	Interpret the	and texts.			equation of
terms of conservation of	equation in terms of				continuity in
charge.	conservation of				terms of
2.3 Define displacement	charge.		conservation of		
---------------------------------	----------------------------	------	--------------------------------		
current and displacement			charge.		
current density.	Explain				
2.4 State the differential form	displacement				
of Ampere's Law.	current and		Direct the		
2.5 Modify Ampere's Law for	displacement		students to		
currents changing with	current density.		define		
time.			displacement		
2.6 Derive the four Maxwell	State the		current and		
equations.	differential form of		displacement		
2.7 Explain the physical	Ampere's Law and		current density		
significance of each of the	its modification for		and use same to		
Maxwell's equation.	current change with		solve numerical		
2.8 Apply Maxwell's	time.		problems.		
equations to fields varying					
rapidly with time.	Show how to drive				
2.9 State an example in which	the four Maxwell		Ask the students		
fields change rapidly with	equations.		to state the		
time.		-do-	differential form		
2.10 Explain electromagnetic	State the physical		of Ampere's		
radiation in terms of	significance of each		Law and its		
rapidly changing fields.	of the Maxwell's		modification for		
2.11 Describe electromagnetic	equation.		current change with time.		
radiation.	Discuss Maxwell's		with time.		
			Direct the		
	equations to fields				
	varying rapidly with time.		students to apply Maxwell's		
	with time.				
	Show an example		equations to fields varying		
	in which fields		rapidly with time		
	change rapidly with		and explain		
	time.		electromagnetic		
	unite.		radiation in		

	Discuss			terms of rapidly
	electromagnetic			changing fields.
	radiation in terms of			
	rapidly changing			
	fields.			
General Objectives 3.0 Outline the pro	perties of electromag	netic waves and their pr	ropagation in free space and matt	er
3.1 State Maxwell's equation	Discuss how	Lecture notes and		Ask the students
in free space	Maxwell's equation	reference materials		to state
3.2 Solve Maxwell's equation	in free space	and texts.		Maxwell's
in free space.	corresponds to			equation in free
3.3 Show that the solution of	waves with speed			space and show
Maxwell's equation in free	of light.			how Maxwell's
space corresponds to				equation in free
waves with speed of light.	Explain how the			space
3.4 Show that the speed of	speed of light in			corresponds to
light in free space is related	free space is related			waves with
to μ_o and ϵ_o (permeability	to μ_o and ϵ_o			speed of light.
and permittivity of free	(permeability and			
space).	permittivity of free			
3.5 Explain the important	space.)			Direct the
features of the				students to
electromagnetic field by	State the important			explain the
plane waves; wave	features of the			important
number, wavelength,	electromagnetic			features of the
period, frequency and	field by plane			electromagnetic
wave velocity.	waves; wave			field by plane
3.6 Explain polarized plane	number,			waves; wave
wave.	wavelength, period,			number,
3.7 State the expression for	frequency and wave			wavelength,
linearly polarized plane	velocity.	-do-		period,
wave.				frequency and
3.8 Illustrate with the aid of	State polarized			wave velocity.
diagrams, the relative	plane wave.			
directions of electric and				Direct the

 magnetic field vectors in a plane wave. 3.9 Derive the relation between the electric and magnetic fields in the electromagnetic wave. 3.10 Define the refractive index of the medium. 3.1 Calculate the energy in an electromagnetic wave. 3.2 Define [i] poynting vector [ii] wave group [iii] wave velocity, [iv] phase velocity, [iv] group velocity. 	Show the expression for linearly polarized plane wave. Describe with the aid of diagrams, the relative directions of electric and magnetic field vectors in a plane wave. Show how to derive the relation	Lecture notes and reference materials and texts.	students to state the expression for linearly polarized plane wave, show diagrammaticall y the relative directions of electric and magnetic field vectors in a plane wave and derive the relation between the electric and
3.3 Determine the attenuation of plane waves in conductors.	between the electric and magnetic fields in the		magnetic fields in the electromagnetic
3.4 Explain the skin effect.3.5 Describe the absorption of plane waves in	electromagnetic wave.		wave.
insulators.	Explain the refractive index of a		
3.16 Define absorption index.	medium. Explain how to calculate the energy in an electromagnetic wave.		Ask the students to explain the attenuation of plane waves in conductors and describe the absorption of
	Give the definition: [i] poynting vector [ii] wave group [iii] wave velocity,		absorption of plane waves in insulators

		[iv] phase velocity			
		[v] group velocity.			
		[v] group velocity.			
		Give the definition			
		of the absorption of			
		plane waves in			
C I		insulators.	• • • •		
General	l Objectives 4.0 Outline the prop	<u> </u>	• •	smission lines	
	4.1 Define a transmission line.	Give the definition	Lecture notes and		Ask the students
	4.2 Define [i] a lossy line, and	of; [i] transmission	reference materials		to define a
	[ii] a loss less line.	line [ii] a lossy line	and texts.		transmission
	4.3 Explain the properties of	[iii]a loss less line.			line, a lossy line,
	loss line.	Explain the			a loss less line.
	4.4 Write the [i] current and	properties of loss			
	[ii] voltage equation for a	line			
	wave traveling along a				
	line.				Ask the students
	4.5 Describe commonly used	Provide the;			to state the
	line e.g. coaxial cables and	[i] current and [ii]			equations of
	parallel strip lines.	voltage equation for			current and
	4.6 Calculate capacitance per	a wave traveling			voltage for a
	unit length and inductance	along a line.			wave traveling
	per unit length of				along a line.
	commonly used lines.	Describe commonly			Solve numerical
	4.7 Derive [i] the characteristic	used line e.g.			problems.
	impedance of lines; [ii]	coaxial cables and			-
	speeds of signal	parallel strip lines.			Direct the
	propagation along the line.	- •			students to
	4.8 Explain reflections at the	Show how to			derive the
	end of transmission lines.	calculate			characteristic
	4.10 Explain standing waves	capacitance per unit			impedance of
	along the lines.	length and			lines; speeds of
	4.10 Calculate voltage standing	inductance per unit			signal

wave ratio.	length of	Lecture notes,	propagation
4.11 Explain misn	natched commonly used	reference texts and	along the line.
transmission 1	ine. lines.	materials.	
4.12 Explain impermatching.4.13 Explain transa shigh freque	edance Describe reflecti at the end of	25	Ask the students to write short note on mismatched transmission line, impedance
	Describe		matching and transmission
	mismatched transmission line	o,	lines as high frequency
	impedance		circuit.
	matching, and		
	transmission line		
	as high frequenc	у	
	circuit.		
General Objectives 5.0 O	utline the propagation of high f	frequency signal wave - guides	
1.1 Define wave	× • • • • •	Lecture notes,	Direct the
1.2 Describe way		~	students to
common sens	8		discuss wave-
1.3 Compare a wa	ave-guide antenna in		guides in
with an anten		ves.	common sense
transmitting v	e		and with an
1.4 Describe the p			antenna in
of waves betw	veen propagation of		transmitting
conducting pl	anes. waves between		waves.
1.5 Explain the re transmission of		es.	
electromagnet	tic wave. Describe the		
1.6 State the bour	ndary reflection and		Ask the students

conditions.	transmission of		to explain the
1.7 Define transverse	electromagnetic		propagation of
electromagnetic waves.	wave.		waves between
1.8 Write an expression for	wave.		conducting
acceptance propagation			planes and
mode.	Discuss transverse	-do-	explain
		-40-	reflection and
1.9 Define [i] cut-off frequency modes [ii] wave	electromagnetic waves.		transmission of
1 2 5 3	waves.		
guide number and [iii]			electromagnetic
guide wavelength.			wave.
1.10 Explain the	State the expression		
characteristics of the waves	for acceptance		
that can travel down a	propagation mode.		Ask the students
rectangular wave-guide.			to discuss the
5.10 Write the wave-guide	Give the definitions		characteristics of
equation.	of cut-off frequency		the waves that
5.11 Write expressions for	modes, wave-guide		can travel down
transverse	number and guide		a rectangular
electromagnetic wave.	wavelength.		wave-guide and
5.12 Explain how $T_{m01}, T_{M10},$			give expressions
modes vanish in	Describe the		for transverse
rectangular wave-guide.	characteristics of		electromagnetic
5.13 State the losses in	the waves that can	Lecture notes and	wave. Solve
practical wave-guides.	travel down a	reference materials	numerical
5.14 Describe the basic	rectangular wave-	and texts.	problems.
structure of a cavity	guide.		
resonator (reflex klystron			
or magnetron).			
5.15 Calculate the resonant			Direct the
frequency of a rectangular	Describe how T_{m01} ,		students to
cavity.	T_{M10} , modes vanish		discuss how
5.16 State expressions for	in rectangular wave		$T_{m01}, T_{M10},$
both electric and magnetic	guide and state the		modes vanish in
fields in the cavity.	losses in practical	-do-	rectangular wave

5.17 H	Explain how [i] transverse	wave-guides.		guide.
e	electric [TE], [ii]			
t	transvers magnetic [TM]	Describe the basic		
a	and Transverse	structure of a cavity		To Ask the
e	electromagnetic [TEM]	resonator (reflex		students to state
v	wave modes are obtained	klystron or		basic structure of
i	in the cavity.	magnetron).		a cavity
5.18 I	List the different uses of			resonator (reflex
	cavities.			klystron or
				magnetron) and
				give expressions
				for both electric
				and magnetic
				fields in a cavity.

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Analogue Electronics	Code: PYE 323	Contact Hours: 4 Hours/week
Credit Unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 1	Semester: Second	Practical: 2 Hours/week

Course main Goal: The course is designed to provide students with knowledge and skills that would enable them design different types of transistor amplifiers.

General Objectives:

On completion of the course, the student should be able to:

- 1.0 Outline the construction, characteristics and uses of different semiconductor diode
- 2.0 Outline the constructional features, characteristics and uses of various transistors
- 3.0 Comprehend the analysis and parameters of common-emitter single stage transistor amplifiers
- 4.0 Comprehend the analysis and parameters of common-Emitter single stage transistor Amplifiers
- 5.0 Comprehend the analysis and parameters of single stage amplifiers with high input impedance
- 6.0 Comprehend the frequency response of RC coupled amplifiers
- 7.0 Comprehend the Concept of Multistage Amplifiers
- 8.0 Comprehend the concept of Small Signal Turned Amplifier
- 9.0 Comprehend the Concept of Direct Coupled Amplifiers
- 10.0 Comprehend the concept of Power Amplification
- 11.0 Outline the working principles and applications of the operational amplifier

ELECT	TRONICS)				×	
Course	Title: Analogue Electronics		Code: PYE 3	24	Credit Units: 2 Units	
	specifications: Theoretical c			Practical Code: PYE 327Contact Hours: 2 Hours/Week		
Genera	l Objective 1.0 Outline the c	onstruction, chara	acteristics and u	uses of different semico		
Week	Specific Learning	Teacher's	Resources	Specific Learning	Teacher's Activities	Evaluation
	Outcomes	Activities		Outcomes		
	 Semiconductor diode 1.1 List types of diodes and their symbols (i.e. p-n junction diode, breakdown (zener) diode, Tunnel (Esaki) diode, photodiodes, and light emitting diodes) 1.2 Describe the construction and V-I characteristic of [i] P- N Junction diode [ii] Tunnel diodes and [iii] Photodiode 1.3 State the uses of the various types of diodes listed in 1.2 above. 1.4 Compare V-I characteristics of Silicon and germanium diodes under forward and reverse biased conditions. 1.5 Describe an 	Explan the principle of operation of (i) p - n junction diode. (ii) Tunnel diodes (iii) photodiode. Explain the V-I characteristics of diodes under forward and reverse biased conditions. Solve problems involving diode equation. Give practical applications of diodes. Give practical applications of diodes.	Textbook Diodes of different types: junction diode, photodiodes, tunel diodes, Zener diodes, silicon diode, germanium diode etc DC Power supply unit or battery, signal generators, connecting wires, bread board.	Determine the static and dynamic characteristics of a silicon diode (general purpose diode) Investigate the working of the diode as a limiter and clamper. Determine zener diode characteristics. Investigate the working of a diode in single phase, half- wave and full wave rectification.	Set up experiment to determine the VI characteristics of a junction Set up experiment to compare the VI characteristics of silicon and germanium Conduct practical to determine the characteristics of diodes, and investigate their use on half wave and full wave rectifier	Explain the process for formation of PN junction from P type and N type materials Outline the differences in the VI characteristics of silicon and germanium diodes.

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

 experiment to determine V-I characteristics for silicon and germanium diodes 1.6 Explain the diode equation. 1.7 Draw the equivale circuit of a diode (Piecewise-linear approx) 1.8 Derive an express for diode resistant from the diode equation. 1.9 Determine the stat and dynamic resistance of a sili diode (general purpose diode) 1.10 Describe how to determine zener diode characteristic 	ion Use graph to explain the difference between the AC ic and DC resistance of a junction diode	Lecture notes, reference texts and materials.		Connect circuit to determine the VI characteristics of a Zener diode	Why do we use zener diode as voltage regulators
General Objectives 2.0 Outline		tures, characte	ristics and uses of vario	ous transistors	
TransistorCharacteristics2.1List the various ty of transistors and their symbols (bipolar transistor field-effect transistors, injunct transistors and sili controlled rectifier	bipolar transistors. s, Explain the characteristic tion curves for con bipolar	Bipolar transistors Field effect transistors Unijunction transistors BC 107 or (108,109) power supply unit, CRO,	Measure the basic parameters (Static characteristics) of a transistor in C-E configuration. Measure the basic parameters of a transistor in the C-B configuration.	Conduct practical to measure the basic parameters of transistors in the C.E and C-B configurations	What are the advantages of the FET over the BJT. What are the practical applications UJT

2.2	2 Draw circuit	common hase	multimeter		
2.2		common – base, common-emitter		Determine the	
	diagrams of properly	and common-	(digital).	characteristics of FET	
	biased P-n-P, n-p-n bipolar transistors for	collector		characteristics of FET	
	different				
		configurations.			
	configurations.	Solve problems			
2.3		on bipolar			
	curves for bipolar	transistors.			
	transistor in: [i]	Discuss the			
	common base (CB)	application			
	configuration [ii]	hybrid			
	common-emitter	parameters of			
	(CE) configuration	equivalent			
	[iii] and common-	circuit of a			
	collector (C.C)	bipolar			
	configuration	transistor.			
2.4	4 Determine from 2.3	Explain the	•		
	above the following	principle of	Lecture notes		
	[i] input resistance	operation of	and reference		
	[ii] voltage gain [iii]	field effect	materials and		
	and current gain [iv]	transistor (FET).	texts.		
	output resistance	Solve problems			
2.5		on the			
	experimentally the	characteristic			
	basic parameters of	curve of field			
	transistor in	effect transistor.			
	common-Emitter	Explain the			
	configuration.	constructional			
2.6	6 Draw the hybrid (h-)	factors of the			
	parameters equivalent	Unijunction.			
	circuit of a bipolar	Give practical			
	transistor.	applications of			
2.7		Unijunction			
	constructional	Transistor.			

features and equivalent circuit of the mud field effect transistor (FET) 2.8 Describe the characteristics curve of the FET in: [i] common source and [ii] common drain	Explain the principle of operation of silicon controlled rectifier (SCR).				
 configuration 2.9 Describe how to determine the characteristics of FET 		Lecture notes and reference materials and			
2.10 Describe the constructional features and characteristic curves		texts.			
of the injunction transistor (UJT). 2.11 Describe some applications of UJT					
2.12 Describe the constructional features and characteristic curve					
of silicon controlled Rectifier (SCR) 2.13 Describe applications					
of SCR General Objectives 3.0 Comprehend	d the analysis and	narameters of	common-emitter single	e stage transistor amp	lifiers
Single-Stage Transistor Amplifiers	Explain the operation of a	CRO, power supply unit	Investigate the properties of a	Conduct practical to investigate the	Explain how the operating

	2.1 Denver the a sime-sit	ain ala at	ai an al	tron aiston a		maint the de
-	3.1 Draw the circuit	single stage	signal	transistor power	properties/parameters	point, the dc
	diagrams of a	transistor	generator,	amplifier.	of transistors for	load line, the
	common-emitter	amplifier.	probes,		amplifiers connected	ac load line of
	amplifier for different	Discuss the	transistors	Determine the voltage	in CE and CB mode.	a single stage
	biasing methods.	importance of		and current gains of a		amplifier may
	3.2 Describe the	load line method		C-E amplifier		be determined
	operations of a	in single-stage				
	common emitter	transistor		Investigate the effect		
	amplifier.	amplifiers.		of negative feedback		
	3.3 Describe using the	Solve problems		on the gain and		
	load line method: [i]	on single stages		frequency response of		
	the voltage gain [ii]	transistor		an amplifier.		
	the current gain and	amplifiers.				
	[iii] the power gain of			Investigate the effects		
	a common emitter			of positive feedback		
	amplifier.			in the gain and		
	3.4 Draw the equivalent			bandwidth of		
	circuit of a common-			transistor amplifier.		
	emitter transistor					
	amplifier using h-		Lecture notes			
	parameters.		and reference			
	3.5 Derive expressions		materials and			
	for [i] input		texts.			
	resistance [ii] voltage					
	gain and [iii] current					
	gain of common					
	emitter amplifier					
	using 3.4					
3	3.6 Solve numerical					
	problems on common					
	emitter amplifiers					
General (Objectives 4.0 Comprehend	d the analysis and	narameters of	single stage amnlifiers	with high innut imned	ance
	Amplifier circuits with	Explain the	Lecture notes	single stage amprillers	in mon mput imped	State the
1	simplifier en cuits with		Locure notes			

hig	sh inputs impedance.	circuit diagrams	and reference			applications of
4.1	Draw circuit diagram	of a common	materials and			FET
	of a common	collector	texts.			amplifiers
	collector amplifier	amplifier				
	(emitter follower).	(emitter				
4.2	Derive an expression	follower).				
	for the input	Give practical				
	impedance of the	applications of				
	common-collect	common				
	using h-parameter.	collector				
4.3	State the properties of	amplifier.				
	a common collector	Discuss the				
	amplifier.	circuit diagram				
4.4	Describe the	of FET in single				
	bootstrapping	stage amplifier.	-do-			
	technique of					
	increasing the input					
	impedance of an					
	emitter follower.					
4.5	Draw the circuit					
	diagram of a FET					
	amplifier in common					
	collector					
	configuration.					
4.6	State the properties of					
	FET in 4.5 above.					
4.7	Explain some					
	applications of					
	common collector					
	amplifier and FET					
	amplifiers.					
General Ob	jectives 5.0 Comprehen	d the frequency re	sponse of RC c	oupled amplifiers		
	equency response of	Explain the RC	Resistors,	Determine the	Conduct practical to	What is the
RC	C coupled	coupled	capacitors.	frequency response of	determine the	effect of the

 5.1 Describe the frequency response of typical RC coupled amplifiers. 5.2 Determine the bandwidth of an RC coupled amplifier from the frequency response curve. 5.3 Explain the effect of the coupling capacitor on the frequency response curve at low and high frequency. 5.4 Describe the effect of the emitter by-pass capacitor on the frequency response of the amplifier. 5.5 Describe how to determine the frequency response curve of an RC coupled amplifier. 5.6 Explain the RC coupled amplifier circuit. 5.7 Describe the frequency response curve of an RC coupled amplifier. 	amplifier circuit. Discuss the frequency response curve of an RC coupled amplifier. Give assignments to students on RC coupled amplifier Lecture and describe how to determine the frequency response curve of an RC coupled amplifier. Give assignments to students on R-C coupled amplifier.	Lecture notes and reference materials and texts.	an RC coupled amplifier. Determine the band width of the RC coupled amplifier	frequency response of an RC coupled amplifier and the bandwidth	coupling capacitor on the frequency response of an RC coupled amplifier. Ask students to describe how to determine the frequency response curve of an RC coupled amplifier and give assignments to students on R- C coupled
General Objective 6.0 Comprehend				Conduct an atics 1 to	What are the
Multistage Amplifier	Distinguish	Resistors,	Determine the	Conduct practical to	What are the
6.1 Define a multistage	between single	Capacitors	frequency of: RC-	determine the	merits and
amplifier circuit.	stage and	Transformers	coupled multistage	frequency of	demerits of an

<u>г</u>	60	State the different	multista	A number of	amalifian turneferm	differently1 - 1	DC again 1 - 1
	6.2		multistage		amplifier, transformer	differently coupled	RC coupled
		methods of amplifier	amplifiers.	transistor eg	coupled multistage	amplifiers	amplifiers
		coupling e.g. RC	Explain the	BC108, etc.	amplifier, direct-		Compare the
		coupling, direct	frequency		coupled multistage		frequency
		coupling and	response curve		amplifier.		response of
		transformer coupling.	of a two stage				the RC
	6.3	Draw the circuit	RC coupled				coupled
		diagram of an RC	amplifier.				amplifier and
		coupled two-stage	Explain the				that of a
		transistor.	basic features of				transformer
	6.4	Explain with the aid	a transformer				coupled
		of a sketch, the	coupled				amplifier
		frequency response	multistage				
		of a two stage RC	amplifier and				
		coupled amplifier.	direct coupled				
	6.5	Derive the	multistage				
		relationship between	amplifier.				Instruct the
		the gain and band	State the				students to
		width of a multistage	applications of				explain the
		RC coupled amplifier	different types	Lecture notes			basic features
	6.6	Draw the circuit	of coupling in	and reference			of a
		diagram of a	6.2 above.	materials and			transformer
		transformer coupled		texts.			coupled
		multistage amplifier.					multistage
	6.7	e 1					amplifier and
		of sketch, the					direct-coupled
		frequency response					multistage
		of a transformer-					amplifier.
		coupled amplifier.					··· F ···
	6.8	Draw the circuit					
		diagram of a direct					
		coupled multistage					
		amplifier					
	6.9	Explain, with the aid					
	5.7	Explain, while the did		1			L

of a sketch the frequency response of direct coupled multistage amplifier6.10 Compare the advantages and disadvantages of different types of coupling in 6.2 above.General Objective 7.0 Comprehend	the concent of sm	all signal tune	d amplifier		Ask student to compare the advantages and disadvantages of different types of the different types of coupling
J	-	0	Determine the	Conduct practical to	Ask students
Small Signal Tuned Amplifier	Explain with the aid of a sketch,	Transistors, Inductors,	bandwidth in tuned	Conduct practical to determine the	to explain
7.1 Draw the circuit	the operation of	Capacitors,	transistor amplifier	bandwidth of tuned	tuned
diagram of a tuned	a tuned	other	circuits	amplifier	amplifier and
transistor amplifier	amplifier and	consumables.	circuits	ampinio	explain the
7.2 Describe the operation	double-tuned	consumations.			operation of a
of a tuned amplifier.	amplifier circuit.				double tuned
7.3 Calculate the resonant	umphiller encourt.				amplifier
frequency of the tuned	Discuss the				winpinio
circuit.	characteristic				
7.4 Draw the circuit	curve of a tuned				
diagram of a double	transistor				
tuned amplifier circuit.	amplifier circuit.				
7.5 Describe the principle	-				
of operation of a					
double tuned amplifier.					Direct the
7.6 Explain how to					students to
determine the	Explain how to				Explain how
bandwidth in tuned	determine the				to determine
transistor amplifier	bandwidth in				the bandwidth
circuits.	tuned transistor				in tuned
7.7 List areas of	amplifier				transistor

	applications of tuned amplifiers e.g. [i] r. f. amplifiers in radio receiver and [ii] video amplifiers 7.8 Explain with the aid	circuits.	Lecture notes, reference texts and materials.		amplifier circuits.
	of a sketch, the operation of a tuned amplifier and double- tuned amplifier circuit. 7.9 Describe the characteristic curve of a tuned transistor				
General	amplifier circuit. Objectives: 8.0 Comprehen	d the concept of d	lirect counled a		
	Direct Coupled	Explain the	Charts and		Direct to draw
	 Amplifiers 8.1 List three class of direct coupled amplifiers [i] Darlington- connection [ii] differential amplifier [iii] operational amplifier 8.2 Draw the circuit diagram of a Darlington (pair) amplifier 8.3 Describe the 	principle of a Darlington (pair) amplifier. Solve problems on the h- parameters for a Darlington pair amplifier	diagrams Lecture notes and reference materials and		and explain the nature of frequency response of a direct-coupled amplifier.
	operation of the circuit in 8.2 8.4 Derive expressions	Derive	texts.		Ask the student to

General Objectives: 9.0 Comprehend the concept of power amplification Power Amplifiers Explain each Transistors Determine the Conduct practical to Compare the 0.1 Explain the officiency <	8. 8. 8.	 using h-parameters for: [i] input impedance [ii] current gain [iii] output impedance and [iv] voltage gain of a darlington pair amplifier Describe the use of diodes to stabilize the Darlington pair amplifier Draw the circuit diagram of a balanced differential amplifier Describe the working principles of the balanced differential amplifier Describe with the aid of diagram the working principles of the unbalanced differential amplifier. Explain the determination of common-mode rejection ratio (CMRR) of a differential amplifier 	expressions using h- parameters for: [i] input impedance [ii] current gain [iii] output impedance and [iv] voltage gain of a Darlington pair amplifier Describe with the aid of diagram the working principles of a balanced differential amplifier and an unbalanced differential amplifier.	Lecture notes and reference materials and texts.			derive expressions using h- parameters for: [i] input impedance [ii] current gain [iii] output impedance and [iv] voltage gain of a Darlington pair amplifier Instruct the students to describe with the aid of diagram the working principles of a balanced differential amplifier and an unbalanced differential amplifier.
		0 1		-			
		ower Amplifiers 1 Explain the	Explain each class of power	Transistors and other	Determine the efficiency of class A	Conduct practical to determine efficiency	Compare the efficiency of

9.3 9.4	importance of large signal amplification. Explain the classification of power amplifiers i.e. [i] class A mode [ii] class B mode [iii] class B mode [iii] class AB mode and [iv] class C mode Describe the method of determining the power output and the efficiency of an amplifier. Describe the operation of the push- pull power amplifiers in the: [i] class A mode [ii] class B mode and [iii] class AB mode Compare the merits and demerits of classes of push-pull power amplifiers listed in 9.4 above.	amplifiers. Illustrate the working principle of the push-pull amplifiers with suitable circuit diagrams. State the practical application of classes of push pull power amplifiers.	consumables Lecture notes and reference materials and texts.	transistor power amplifier Determine the efficiency of class B transistor power amplifier	of class A and class B power amplifiers	class A and class B amplifiers Describe the operation of the push-pull power amplifiers in the: [i] class A mode [ii] class B mode and [iii] class AB mode and Compare the merits and demerits of classes of push-pull power amplifiers
General Obj	ectives 10.0 Comprehe	nd the concept of I	Feedback as it a	affects the performance	e of the transistor amp	lifier
Am 10.1 10.2	gative Feedback plifier Define feedback Derive an expression for voltage gain in negative feedback amplifier.	Explain with the aid of diagram the negative-fed back amplifiers. State the applications of negative-	Lecture notes and reference materials and texts.			

 10.3 Explain the effect of feedback on [i] voltage gain [ii] distortion [iii] band width [iv] input impedance [v] and [vi] output impedance. 10.4 Classify, using black diagrams negative feedback into: [i] series voltage feedback [ii] series current feedback [ii] parallel voltage feedback and [iv] parallel voltage feedback and [iv] parallel current feedback 10.5 Describe with the aid of circuit diagrams, negative 	feedback amplifiers listed in 10.4.	Lecture notes, reference texts and materials.			Instruct students to explain with the aid of diagram the negative-fed back amplifiers. State the applications of negative- feedback
feedback amplifiers					amplifiers
listed in 10.4General Objective 11.0 Outline the	working principle	s and annliaati	ons of the operational s	mnlifior	
11.1 Describe the basic	Explain the	Drawings			Explain how
operational Amplifier (OP AMP) with aid of block diagram.	working principle of operational	and charts			the operational amplifier may be used as an
11.2 Explain the	amplifiers.				integrator and
characteristics of	Illustrate the				as a
voltage operational	characteristics				differentiator.
Amplifiers. 11.3 Describe the	of OPAMP with the aid of				
characteristics of OP	diagrams.				
AMP in the inverting	Use the				

	1		1	
and non-inverting	expressions			
modes.	derived in 11.5			
11.4 Explain the concept	and 11.6 to			
of virtual ground in	solve problems			
OP AMP.	on OPAMP.	Lecture		
11.5 Write the expression	Discuss the	notes,		
for the gain of OP	importance of	reference		
AMP for differential	OP-AMP	texts and		
input.	parameters	materials.		
11.6 Write the expression	listed in 11.9			
for the input and	and 11.10.			
output impedance.				
11.7 Define the voltage				
supply rejection ratio.	E			
11.8 Describe the	Explain the OP-			
frequency response	AMP			
of an OP AMP.	specifications in			
11.9 Define the following	the manufacturers'			
terms: [i] input off –				
set voltage [ii] input	data sheet.			
bias current and [iii]				
slow rate				
11.10 Explain the				
following OP AMP		1		D: (1
parameters, i.e. open		-do-		Direct the
loop voltage gain,				students to
output resistance				explain the
without feedback,				following OP
differential input				AMP
resistance, input				parameters
offset voltage, input				and OP-AMP
bias current and input				specifications
offset current,				in the
common mode				manufacturers'

rejection ratio, and slow rate. 11.11 Explain the manufacturer's data specification for an OP AMP in terms of				data sheet giving examples
[i] the rated output [ii] power dissipation [iii] input overload protection [iv] supply current drain and [v] amplifier noise 11.12 Describe the effect of cross-over distortion in the design of equipment using operational amplifier 11.13 Explain the use of OP AMP as: [i] an	Explain how to minimize crossover distortion in operational amplifier. Illustrate with the aid of diagrams, the connection of	Lecture notes, reference texts and materials.		Direct the students to explain how to minimize crossover distortion in operational amplifier.
integrator [ii] a differentiator [iii] an instrument amplifier [iv] current to voltage converter and [v] precision voltage regulator etc.	OP-AMP as listed in 11.13. Discuss the applications of OP-AMP in practical systems.			Ask the students to discuss the applications of OP-AMP in practical systems.

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH

ELECTRONICS)

ELECTRONICS)		
Course Title: Telecommunication Principles	Code: PYE 324	Contact Hours: 4 Hours/week
Credit Unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 1	Semester: Second	Practical: 2 Hours/week

Course Main Goal: this course is designed to enable students develop skills in handling transmission of information by various technologies.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Appreciate the electromagnetic spectrum as applied to telecommunications
- 2.0 Recognize the relationship between transmission lines and modulated signal
- 3.0 Apprehend how binary information is transmitted as a digital signal
- 4.0 Recognize how an analogue signal is converted to a digital signal
- 5.0 Recognize the concept of signal multiplexing

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS) Code: PYE 324 Credit Unit: 2 Units

course rule. Telecommunication runeiples			Couc. 1 1 L 524		Cituit Unit. 2	Onits		
Course specifications: Theoretical contents			Practical Code: PYE 327		Contact Hours: 2 Hours/Week			
General Objective 1.0 Appreciate the electromagnetic spectrum as applied to telecommunications								
Week	Specific Learning	Teacher's	Resources	Specific Learning	Teacher's	Evaluation		
	Outcomes	Activities		Outcomes	Activities			
	1 1 Describe the physical	Show the	Lecture notes			List the principal		

	1.1 Describe the physical	Show the	Lecture notes,		List the principal
	properties of	classification of	reference texts and		bands of the
	electromagnetic	the	materials.		electromagnetic
	radiation and the	electromagnetic			spectrum and
	relationship between	spectrum			their associated
	frequency and	indicating the			frequencies and
	wavelength.	frequencies and			wavelengths.
	1.2 List the principal	wavelengths			wavelenguis.
	bands of the				

equivalent transmission lines" capacitance and Measure inductance and distribut	Instruct the students to identify the main telecommunicati	e main nicatio
1.5 Sketch the spectrum of an AM wave from the expression of an amplitude modulated waveamplitude modulated wave.amplitude modulated wave.General Objectives 2.0 Recognize the relationship between telecommunication circuits, transmission line wavescircuit board distributed transmission lines" consisting of: 50 kHzMeasure distributed inductance of a	n applications of electromagnetic radiation and write the	netic nd
General Objectives 2.0 Recognize the relationship between telecommunication circuits, transmission line waves2.1 Identify the circuit properties (resistance, inductance andExplain the design of equivalent transmissionLabvolt circuit board "communication transmission lines" consisting of: 50 kHzMeasure distributed capacitance of aAsk the students	mathematical expression for an amplitude modulated wave	for an
waves2.1 Identify the circuit properties (resistance, capacitance, inductance andExplain the design of equivalent transmissionLabvolt circuit board "communication transmission lines" consisting of: 50 kHzMeasure 		
2.1 Identify the circuit properties (resistance, inductance andExplain the design of equivalent transmissionLabvolt circuit board (communication transmission lines"Measure distributed capacitance andAsk the students distributed distributed distributed	n lines and modulated radio	dio
properties (resistance, capacitance, inductance and properties (resistance, capacitance, inductance and properties (resistance, capacitance, transmission consisting of: 50 kHz consisting of: 50 kHz		
current (AC) circuits and describe their effects on transmission linesdescribe the effect of circuit elements on transmissionimpedance of 10, 25, 50, 100 and 500 Ohms, 2, 24 meter RG-174 coax transmission lines, different loadsline and obtain characteristic impedance and velocity of propagation usinginductar inductar	adents to easure stributed pacitance and ductance of a nsmission e and obtain aracteristic pedance and locity of opagation students to explain and write the expression for: [i] transmitted band width, and [ii] AM radiated power	ion tted , and liated

oonstants		apparitors Talitrani	inductance	distributed	degign on
constants 2.3 Describe characteristic		capacitors, Tektronix TDS2000	muuctance		design an equivalent circuit
				capacitance and	1
impedance in		oscilloscope, 2 CH +		inductance	model of a
transmission lines		EXT Trigger @			transmission line
including open circuit,		200MHz, 1Gs/Sec,			using the primary
short circuit and		iTT 1604 high			line constants.
matched termination	T 1 · 1 1 ·	accuracy digital			
2.4 Write the expression	Explain and drive	multimeter			
for: [i] transmitted	the expression				
band width, and [ii]	for: [i]				
AM radiated power	transmitted band				
2.5 Explain why more	width, and [ii]				
power resides in the	AM radiated				
carrier than in the side	power.				
bands.					
2.6 Define modulation					
index					
2.7 Explain the need for					
transmission using: [i]	Explain the need	LAB transmission line	Investigate and	Instruct the	Direct the
DSB [ii] SSB [iii] and	for transmission	demonstrator, dual	study the	students to	students to
DSBSC [iv] SSBSC.	using: [i] DSB	trace oscilloscope,	characteristics	investigate and	explain the need
2.8 Explain the generation	[ii] SSB [iii] and	digital multimeter, set	of a	study the	for transmission
of amplitude	DSBSC [iv]	of patching chords,	transmission	characteristics	using: [i] DSB [ii]
modulated signals	SSBSC.	function generator (2	line including	of a	SSB [iii] and
using appropriate		MHz).	attenuation,	transmission	DSBSC [iv]
electronic circuit.			delay,	line including	SSBSC.
2.9 Write the advantages			frequency	attenuation,	
and disadvantages: [i]			response,	delay,	
DSB [ii] SSB [iii] and			standing waves,	frequency	
DSBSC [iv] SSBSC.			ac line coupling	response,	
2.10 Explain the			and effect of	standing waves,	
advantages and			additive noise.	ac line coupling	
disadvantages of: [i]				and effect of	
DSB [ii] SSB [iii] and				additive noise.	

DSBSC [iv] SSBSC.					
General Objectives 3.0 Apprehend	how binary inform	ation is transmitted	as a digital signal		
 3.1 Describe the properties of digital signals including frequency, mark space ratio and triggered timing. 3.2 Describe the advantages of digital signals in terms of regeneration, accuracy and recovery. 3.3 Explain why digital signals need to be modulated onto an analogue carrier. 3.4 Use keying to demonstrate how a digital signal is modulated onto an analogue carrier. 	Use keying to demonstrate how a digital signal is modulated onto an analogue carrier.	Lecture notes, reference texts and materials.			Instruct the students to describe the advantages of digital signals over analogue signal.
General Objectives 4.0 Recognize h	ow an analogue sig	nal is converted to a	a digital signal		
 4.1 Identify different ways of converting [i] an analogue signal to a digital signal and [ii] digital signal to analogue signal. 4.2 Describe the advantages of digital over analog communication. 4.3 State the reasons for encoding techniques 	Discus the basic steps of analogue to digital conversion process. Explain the process of encoding signals before	Digital logic trainer, dual beam oscilloscope, d.c power supply, breadboard.	Design an analog- to-digital and digital-to-analog conversion.	Direct the students to design an analog-to- digital and digital-to- analog conversion.	 Explain the effect of quantization noise on transmitted signal. Calculate the signal to quantization error for a given digital signal

 and list the criteria signal encoding. 4.4 Describe the basic steps of the analog-to- digital conversion process: sampling, and quantizing/encoding 4.5 Describe linear and non-linear forms of encoding. 4.6 Explain quantization error (also called quantization noise). 4.7 Calculate signal to noise quantization errors. 4.8 Explain aliasing in telecommunication terms and how it can be overcome. 4.9 Explain the use, and limitation, of the Nyquist rule in signal sampling. 4.10 Explain digital modulation: [i] Amplitude Shift Keying (ASK) [ii] 	transmission Describe the process of conveying information using digital modulation techniques. Explain quantization error (also called quantization noise) and calculate signal to noise quantization errors. Explain digital modulation: [i] Amplitude Shift Keying (ASK) [ii] Frequency	1*ADC0804, 1*10uF-POL, 1*10Kohm resistance, 1*10Kohm potentiometer, 8*220ohm resistance, 8*LED. Power unit PSU,	Design an analog to digital converter (ADC) circuit that converts analog input signals to corresponding binary output values.	Direct the students to Design an analog to digital converter (ADC) circuit that converts analog input signals to corresponding binary output values.	Explain why the FM requires wider bandwidth than AM. Explain quantization error (also called quantization noise) and calculate signal to noise quantization errors. Direct students to explain digital modulation: [i] Amplitude Shift Keying (ASK) [ii] Frequency Shift Keying (FSK) [iii] Phase Shift Keying (PSK).
Frequency Shift	Shift Keying	module holder	(Amplitude Shift	students to	
Keying (FSK) [iii] Phase Shift Keying	(FSK) [iii] Phase Shift Keying	base, individual control unit SIS1,	Keying), FSK (Frequency Shift	determine ASK (Amplitude	
(PSK).	(PSK).	experiment	(Frequency Shift Keying) and PSK	Shift Keying),	
4.11 Describe how digital		module MCM31,	(Phase Shift	FSK	
information is		oscilloscope.	(Flase Shift Keying) modulation	(Frequency	

OOK, FSK, PSK, or QAM signal. 4.13 Write expression for frequency Modulated waveform. 4.14 Explain the following terms in relation to	Solve numerical examples involving the bandwidth of an ASK, OOK, FSK, PSK, or QAM signal and write expression for frequency Modulated waveform.	Lecture notes, reference texts and materials.	and demodulation	Shift Keying) and PSK (Phase Shift Keying) modulation and demodulation	Ask the students to calculate the bandwidth of an ASK, OOK, FSK, PSK, or QAM signal using numerical numbers and write expression for frequency Modulated waveform.
FM waveform [i] frequency deviation, [ii] radiated power [iii] frequency swing and [v] band width.4.15 Explain why frequency modulated (FM) signal requires wider bandwidth than amplitude modulated (AM) signal.4.16 Sketch the spectrum of an FM waveform.4.17 State the advantages and disadvantages of FM over AM.General Objectives 5.0 Recognize the	Explain why frequency modulated (FM) signal requires wider bandwidth than amplitude modulated (AM) signal and sketch the spectrum of an FM waveform	-do-			Instruct students to explain why frequency modulated (FM) signal requires wider bandwidth than amplitude modulated (AM) signal and sketch the spectrum of an FM waveform.

5.1 Define multiplexing	Elucidate	Lecture notes,	Explain how the
5.2 Explain multiplexing	different	reference texts	concept of
techniques: [i]	multiplexing	and materials.	multiplexing is
frequency division	techniques and		applied in
multiplexing (FDM),	their specific		telecommunication.
[ii] wavelength	areas of		
division multiplexing	application		
(WDM), and [iii] time			
division multiplexing			
(TDM) [iv] code			
division multiplexing			
[v] orthogonal			
frequency division			
multiplexing and [vi]			
space division			
multiplexing.			
5.3 Explain different types			
of TDM [i]			
synchronous, [ii]			
asynchronous TDM,		Lecture notes,	
[iii] interleaving TDM		reference texts	
and [iv] statistical		and materials.	
TDM.			
5.4 Explain the difference			
between analogue and			
digital multiplexing.			
5.5 State the advantages			
and applications of			
multiplexing.			

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)						
Course Title: Physical Optics	Code: PYE 325	Contact Hours: 4 Hours/week				

Credit Ur	nit: 2 Units	Pre-requisite:	Theoretical:	2 Hours/week				
Year: 1		Semester: Second	Practical:	2 Hours/week				
Course m	Course main Goal: this course is enable students apply the knowledge of the nature of light in solving problems in engineering and							
astronomy	Ι.							
General (Objectives							
On the con	mpletion of the course, the student should be	able to:						
1.0	Appreciate the nature of waves and wave the	leory						
2.0	Recognize interference of light waves							
3.0	Comprehend diffraction of light waves							
4.0	Appreciate polarization of light waves							
5.0	Recognize superposition of light							
6.0	Apprehend the concept of dispersion							

PROGRAMME: HIGHER NATIONAL	DIPLOMA SCIENCE LABORATORY	TECHNOLOGY (PHYSICS WITH
ELECTRONICS)		
Course Title: Physical Optics	Code: PYE 326	Credit Unit: 2 Units

Course specifications: Theoretical contents		Practical Code: PYE 327		Contact Hours: 2 Hours/Week			
General	General Objective 1.0 Appreciate the nature of waves and wave theory						
Week	Specific Learning	Teacher's	Resources	Specific Learning	Teacher's	Evaluation	
	Outcomes	Activities		Outcomes	Activities		
	1.1 Explain the wave nature	Describe methods	Lecture notes,	Measure wavelength	Conduct a	Describe the	
	of matter.	of measurement of	reference texts and	of light using	demonstration on	wave nature	
	1.2 Describe measurements	speed of light by	materials	Young's double slit	the use of	of light	
	of the speed of light: [i]	(i) Roemer method		experimental kits	spectrometer and		
	Roemer method and [ii]	and (ii) Fizeau's	Spectrometer,		interferometer		
	Fizeau's technique.	technique.	Michaelson	Compare		Explain	
	1.3 Derive the equation of		Interferometer	wavelengths using		Huygens's	
	wave propagation.			interferometer		principle.	
	1.4 Derive the linear wave	Discuss proof of		Determine			
	equation	the transverse		wavelength of light		Describe	
	1.5 Explain Huygens's	nature of light		with grating.		three-	

principle. 1.6 Derive the wave equation	waves. Explain energy				dimensional plane waves.
from Maxwell's	and momentum		Determine the	Direct the	
equations. 1.7 State the attributes of a	density of light.		wavelength of	students to	Show proof
one-dimensional wave.			sodium light by	determine the	of the
1.8 Describe three-	Explain refractive	Monochromatic	Newton's Ring	wavelength of	transverse
dimensional plane waves.	index, total	source of light	Newton's King	sodium light by	nature of
1.9 Show proof of the	internal reflection	(source of sodium		Newton's ring	light waves
transverse nature of light	and critical angle	light), a plano-		method	
waves.		convex lens C, an			
1.10Explain energy and		optically plane glass			
momentum density of		plate P, an optically			
light.		flat glass plate G			
1.11State the laws of		inclined at an angle			
Reflection and Refraction		of 45°, a travelling			
at Planar surfaces.		microscope with	Determine the	Instruct the	
1.12 Explain reciprocity		measuring scale and	wavelength of	students to determine the	
principle. 1.13 Explain dispersion by		a spherometer. Optical bench with	sodium light using Frenel's biprism	wavelength of	
Prisms: prism		uprights, sodium	Fiener's orprish	sodium light	
spectrometer.		lamp, biprism,		using the	
1.14 Describe the application	Describe the	convex lens, slit and		fresnel's	
of Huygens' principle	application of	micrometer eyepiece		biprism.	
applied to reflection and	Huygen's principle	are already fitted on	Determine the		
refraction:	applied to	the optical bench.	refractive indices of		
1.15 Explain refractive index,	reflection and	-	liquids of different		
total internal reflection	refraction of light		concentration using		
and critical angle.	waves.		laser beam by method		
1.16 Explain fiber optics.			of displacement		
1.17 Explain [i] Light	Explain light			Direct students	
intensity and [ii]	intensity and		Determine the	to determine of	
absorption of	absorption of		refractive indices of	the refractive	
transmitted light.	transmitted light.		liquids of	index (n) of	

		light), spectrometer, prism, Spectrometer accessory kits	Measurement of angle of rotation caused by passing polarized light through an optically active substance	prism using spectrometer	
			Determine the refractive indices and dispersions of flint glass and crown glass using a spectrophotometer		
			Determine the refractive index (n) of the material of a prism using spectrometer		
Objectives 2.0 Recognize inte	rference of light way	ves			
 2.1 Explain the term interference and state the conditions for interference. 2.2 State superposition principle and explain Superposition of two plane waves. 2.3 Explain group velocity of a wave packet. 	Describe the term interference and state the conditions for interference. State superposition principle and explain Superposition of two plane waves.	Young's double slit apparatus	Determine the diameter of a fine wire by interference fringes Demonstrate Young's double-slit	Conduct practical on interference fringes and young double slit measurement	Ask the students to [i] describe the term interference and state the conditions for interference [ii] State
2.	 Explain the term interference and state the conditions for interference. State superposition principle and explain Superposition of two plane waves. Explain group velocity 	1Explain the term interference and state the conditions for interference.Describe the term interference and state the conditions for interference.2State superposition principle and explain Superposition of two plane waves.State superposition principle and explainState superposition principle and explain3Explain group velocity of a wave packet.Superposition of two plane waves.	interference and state the conditions for interference.interference and state the conditions for interference.apparatus2State superposition principle and explain plane waves.State superposition principle and explainapparatus3Explain group velocity of a wave packet.Superposition of two plane waves.apparatus	bjectives 2.0 Recognize interference of light wavesYoung's double slit appratusDetermine the refractive indices and dispersions of flint glass and crown glass using a spectrophotometer1 Explain the term interference and state superposition principle and explain Superposition of two plane waves.Describe the term interference.Young's double slit appratusDetermine the diameter of a fine wire by interference fringes2 State superposition principle and explain Superposition of two plane waves.State superposition principle and explainDetermine the diameter of a fine wire by interference fringes3 Explain group velocity of a wave packet.State superposition of two plane waves.Demonstrate Young's double-slit	bjectives 2.0 Recognize interference of light wavesYoung's double slit aparatusDetermine the refractive indices and dispersions of flint glass and crown glass using a spectrophotometerConduct practice interference fringesbjectives 2.0 Recognize interference of light wavesDetermine the refractive index (n) of the material of a prism using spectrometerDetermine the refractive index (n) of the material of a prism using spectrometer1Explain the term interference.Describe the term interference.Young's double slit aparatusDetermine the diameter of a fine wire by interference

of Young's double-slit experiment. 2.5 Explain intensity	Describe the principles of Young's double-				superposition principle and explain
distribution of the	slit experiment and	Sodium light source,	Determine the	Ask the students	Superpositio
double-slit interference	explain intensity	blank paper, two	thickness of a thin	to determine the	n of two
pattern.	distribution of the	plane, parallel glass	film and examine the	thickness of a	plane waves.
2.6 Explain the concept of	double-slit	plates, ruler,	relationship between	thin film and	plane waves.
phasor addition of	interference	micrometer, 10 cm	the index of	examine the	
waves.	pattern.	focal length lens.	refraction of a thin	relationship	
2.7 Describe phasor	pattern.	iocai iengui iens.	film and the	between the	Direct the
diagrams for two			wavelength of	index of	students to
coherent sources.	Describe the		light incident on the	refraction of a	describe the
2.8 Explain three-slit	concept of phasor		film.	thin film and the	concept of
interference pattern.	addition of waves		111111.	wavelength of	phasor
2.9 Explain interference	and explain phasor			light incident on	addition of
from N – Slits.	diagrams for two			the film.	waves and
2.10 State the principle of	coherent sources				explain
Fresnel's biprism.	concrent sources	Glass block,	Determine the	Ask the students	phasor
2.11 Explain interference in	Explain three-slit	microscope slide,	thickness of paper by	to determine the	diagrams for
thin films.	interference	thin glass plate,	measurements on the	thickness of	two coherent
2.12 Explain [i] Newton's	pattern and	sodium burner or	interference fringes in	paper by	sources
ring, [ii] Fringes of	interference from	flame, travelling	an air wedge.	measurements on	
equal thickness, the	N - Slits.	microscope, stand		the interference	Ask the
wedge.		and clamp, convex		fringes in an air	students to
2.13 Explain an		lens and holder,		wedge.	explain
interferometer:	Differentiate	13 menthylated spirit			three-slit
Michelson	between circular	and clean			interference
interferometer	fringes and	rag.			pattern and
2.14 Explain the	localized (straight)		Determine the		interference
determination of	fringes.	Adjustable narrow	diameter of fine wire	Direct the	from N –
wavelength and d		slit illumination by	by interference	students to	Slits.
using Michelson		sodium light	fringe measurements	determine the	Instruct the
interferometer.	Explain	(sodium lamp or		diameter of fine	students to
	interferometer and	flame), length of		wire by	explain

	with the aid of a diagram describe Michelson interferometer interference	fine copper wire suspended from a stand and held tautly vertical by attaching a small mass at the end, venier reading microscope.		interference fringe measurements	interferomete r and with the aid of a diagram describe Michelson interferomete r interference
General Objectives 3.0 Compre			1	T	
 3.1 Explain the term diffraction. 3.2 Explain diffraction phenomena: [i] Fres and [ii] Fraunhofer diffraction. 3.3 Explain Fraunhofer diffraction of a single slit. 3.4 Explain intensity of single-slit diffraction pattern. 3.5 Explain intensity of slit diffraction pattern. 3.6 Explain resolution o 	two- rn.	Spectrometer, diffraction grating, sodium light. He-Ne laser, Single Slit, Screen, Scale, tape	Determine the wavelength of sodium light using a diffraction grating. Determine the slit width of single slit by using He-Ne Laser	Explain the different methods of achieving and demonstrating diffraction of light and formation of spectra in gratings. Direct the students to determine the slit width of	Ask the students to determine the wavelength of sodium light using a diffraction grating. Instruct the students to explain diffraction grating and
single-slit and circul aperture. 3.7 Explain diffraction grating. 3.8 Describe missing or 3.9 Explain resolving po	ar Explain diffraction grating and describe missing orders. ders.	He-Ne laser, Single Slit, Screen, Scale, tape	Determine the slit width of double slit by using He-Ne Laser	single slit by using He-Ne Laser Direct the	describe missing orders. Ask students
of [i] diffraction gra [ii] Power of a Telescope, [iii]	ting, Explain resolving power of [i] diffraction grating,	Diffraction grating, spectrometer, mercury (Hg)	Determine the wavelength of spectral lines of	students to determine the slit width of	to explain resolving power of [i]

microscope [iv] pr		source, spirit level,	mercury (Hg) source	double slit by	diffraction	
3.10 Describe the form	1 / L J	reading lens.	using diffraction	using He-Ne	grating, [ii]	
of spectra in gratin	0 1 2 3		grating and	Laser	Power of a	
	prism.		spectrometer.		Telescope,	
		Telescope with a			[iii]	
		rectangular		Direct the	microscope	
		adjustable slit,		students to	[iv] prism.	
		cardboard with	Determine the	determine the		
		narrow strips on it	resolving power of a	wavelength of		
		and meter scale.	telescope.	spectral lines of		
			1	mercury (Hg)		
				source using		
		Spectrometer, lamp		diffraction		
		holder, spectral	Determine the	grating and		
		lamp, power supply	resolving power of	spectrometer.		
		for spectral lamps,	glass prism from the	speenemeen		
		prism, 60 degrees,	dispersion curve.			
		hollow prism,	dispersion curve.	Direct the		
		diffraction grating,		students		
		glycerol 250 ml,		determine the		
		cyclohexene for		resolving power		
		5		01		
		synth. 500 ml, wash		of a telescope.		
		bottle, plastic 250				
		ml, bench clamp,				
		and stand tube.		Ask the students		
			Determine the	to determine the		
		Spectrometer,	wavelength of a	resolving power		
		diffraction grating,	given source of light	of glass prism		
		mercury vapour	by using the	from the		
		lamp, spirit level.	diffraction	dispersion curve.		
			grating in the normal			
			incidence method.			
				Ask the students		
				to determine the		
					wavelength of a given source of light by using the diffraction grating in the normal incidence method.	
--------	---	---	---	--	--	--
Genera	l Objectives 4.0 Appreciate po				D :	
	 4.1 Explain polarization of light waves. 4.2 Explain polarization by selective absorption: Malus's law. 4.3 Explain polarization from dichroic materials. 4.4 Explain polarization by reflection: derive Brewster's Law. 4.5 Explain polarization by double refraction. 4.6 Describe birefringence. 4.7 Explain birefringence 	Describe different forms of polarization and applications. Describe birefringence and explain birefringence and circular polarization.	He-Ne laser with built in power supply, Stand for laser, polarizer and analyzer, quarter wave plate, laser detector (Photo device) with measuring devices (digital micro- ammeter). Screen and optical bench with suitable uprights.	Determine the nature of polarization of laser light using photocell and quarter wave plate.	Direct the students to determine the nature of polarization of laser light using photocell and quarter wave plate.	Direct the students to describe birefringence and explain birefringence and circular
	 4.7 Explain offeringence and circular polarization. 4.8 Describe Nicol Prism. 4.9 Explain polarization by scattering. 4.10Explain practical and Ideal polarizers. 4.11Explain [i] optical activity and [ii] Photo- elasticity. 4.12 Explain applications of polarized light. 	Differentiate between practical and Ideal polarizers. Explain [i] optical activity and [ii] Photo-elasticity.	A diode laser, a polarizer-analyzer pair, photo detector, detector output measuring unit (micro ammeter), dial fitted to the polarizer and an optical bench.	Determine the relationship between the intensity of the transmitted light through analyzer and θ' , the angle between the axes of polarizer and analyzer and to verify Malus Law.	Direct the students to determine the relationship between the intensity of the transmitted light through analyzer and ' θ ', the angle between the axes of polarizer and analyzer and to	Ask the students to differentiate between practical and Ideal polarizers.

General Objectives 5.0 Recogni	Explain applications of polarized light.	He laser, dial fitted polarizer, photo detector, micro ammeter, rotational mount, glass plate, constant power supply.	Determine the Brewster's angle for glass using a polarized monochromatic light source.	verify Malus Law. Direct the students to determine the Brewster's angle for glass using a polarized monochromatic light source.	Explain [i] optical activity and [ii] Photo- elasticity. Explain applications of polarized light.
5.1 Add simple sinusoid		Lecture notes and			Direct
waves	position of many	reference texts.			students to
5.2 Explain the superpos					explain
of many waves with	random phases.				superposition
random phases.	····· F ·····				of many
5.3 Describe complex w	aves. Explain complex				waves with
5.4 Explain the use of	waves.				random
Fourier analysis in					phases.
resolving complex w					
patterns into simple	Fourier analysis in				
components.	resolving complex				
5.5 Explain group velocit		 ·			
General Objectives 6.0 Apprehe					
6.1 Explain dispersion		Spectrometer, prism,	Estimate the	Ask the students	
prism.	polarization by	mercury vapour	refractive index and	to estimate the	
6.2 Explain normal	reflection.	lamp, spirit level and	study of dispersion	refractive index	
dispersion.	Explain	reading lens.	relation of a given	and study of	
6.3 Explain atomic	polarization angle and Brewster's		prism using a	dispersion	
polarizability.			spectrometer.	relation of a	
6.4 Derive Cauchy	law.			given prism	

	dispersion equation. 6.5 Anomalous dispersion.	Explain polarization by a			using a spectrometer.	
(6.6 Drive Sellmeier's dispersion equation.	pile of plates. Explain				
(6.7 Effects of absorption on dispersion.	polarization by diachronic	Spectrometer, prism, mercury vapor lamp	Determine the dispersive power of a	Direct the students to	
(5.8 Explain wave and group velocity in the medium.	crystals. Explain double	etc.	material of prism using spectrometer	determine the dispersive power	
	6.9 Describe the complete dispersion curve of a substance.	refraction. Discuss polarization by			of a material of prism using spectrometer	
	6.10 Derive electromagnetic equations for transparent media.	scattering. Calculate problems in 7.9.				
	6.11 Explain theory of dispersion.					
	5.12 Explain nature of the vibration particles and frictional forces.					

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

COURSE TITLE: Quantum Mechanics	Code: PYE 326	Contact Hours: 2 Hours/week
Credit unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 1	Semester: Second	Practical: 0 Hours/week

Course main Goal: this course is designed to enables students study the experimentally based foundational postulates of Quantum systems and learn to solve the Schrodinger equation for non-relativistic quantum systems and become conversant in the language of Quantum mechanics, and its place in the 21st century.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Comprehend the concepts of Schrodinger equation and the operators.
- 2.0 Comprehend time independent Schrodinger equation.
- 3.0 Comprehend general discussion of bound states in an arbitrary potential.
- 4.0 Comprehend one-dimensional quantum mechanical problem.
- 5.0 Comprehend harmonic oscillator and applications.
- 6.0 Comprehend quantum mechanical problems and solutions.
- 7.0 Comprehend the applications of Schrödinger wave equation.

PROGR	PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)						
Course Title: Quantum Mechanics		Code: PYE	Code: PYE 328		Credit Unit: 2 Units		
Course s	specifications: Theoretical contents		Practical Co	ode: None	Contact Hours	: 2 Hours/Week	
General	Objective 1.0 Comprehend the co	ncepts of Schrodinge	r equation an	d the operators.			
Week	Specific Learning Outcomes	Teacher's	Resources	Specific Learning		Evaluation	
		Activities		Outcomes	Activities		
	Schrodinger equation and the	Lecture	Lecture			Ask the students to	
	operators		notes,			explain the	
	1.1 State the postulates of		reference			postulates of	
	quantum mechanics. and	Explain the concept	texts and			quantum mechanics	
	derive equation of wave	of quantum	materials.			and derive the	
	propagation.	Mechanics.				equation of wave	
	1.2 Explain and derive [i] time-					propagation. Solve	
	dependent, [ii] time-					numerical problems	
	independent Schrödinger	Write down				using the equation.	
	equation and dynamical	Schrodinger's					
	evolution of a quantum state.	Equation.				Obtain the time-	
	1					dependent, time-	
	1.3 State and explain the					independent	
	properties of wave function.	Discuss				Schrödinger	
	1.4 Explain the interpretation of	Schrodinger's				equations and solve	
	wave function probability	equation				numerical problems	
	and probability current	in relation to				using these	
	densities in three dimensions.	quantum				equations.	

1.5 State the conditions for	mechanical system.			
physical acceptability of	meenamear system.			
wave functions.				Direct the students to
				explain
1.6 Explain: [i] normalization				normalization,
[ii] linearity and [iii]				linearity and
Superposition principles.				superposition
1.7 Explain [i] Hermitian				principles.
operator, [ii] Eigenvalues				r r r
and [iii] Eigenfunctions.				
1.8 Explain and derive				
expressions for: [i]position,				
[ii] momentum and [iii]				
Energy operators.				
1.9 Explain and derive				
expressions for commutator				
of position and momentum				
operators.				
1.10 Explain and derive				
expressions for expectation				
values of: [i] position and				
[ii] momentum.				
General Objectives 2.0 Comprehend time	independent Schrodi	nger equation	1	
Time-independent Schrodinger		Lecture		Direct the students to
equation	Lecture	notes and		explain Hamiltonian
2.1 Explain [i] Hamiltonian		reference		operators, stationary
operators, [iii] stationary	Explain	texts.		states and energy
states and [iii] energy	Hamiltonian			eigenvalues.
eigenvalues.	operators,			
2.2 Describe wave function: [i]	normalization of			
information, [ii] importance	wave function.			Ask the students to
and [iii] explanation.				describe and explain
				wave function and

2.3 Explain and derive normalization of wave				its importance.
function.				Explain and derive
2.4 Explain expectation values of	Obtain the general			an expression for
dynamical quantities.	solution of the time			expansion of an
2.5 Explain and derive an	dependent Schrodinger			arbitrary wave function as a linear
expression for expansion of	equation			combination of
an arbitrary wave function as	1			energy
a linear combination of				eigenfunctions.
energy Eigen functions.	Explain and derive			Solve numerical
2.6 Obtain the general solution of the time dependent	Fourier transforms			problems using the
Schrodinger equation in	and momentum space wave			equation.
terms of linear combinations	function.			Instruct the students
of stationary states.				to obtain the general
2.7 Explain application to spread				solution of the time
of Gaussian wave-packet for				dependent
a free particle in one		T (Schrodinger
dimension; wave packets.		Lecture notes and		equation in terms of linear combinations
2.8 Explain and derive Fourier	Explain position-	reference		of stationary states.
transforms and momentum	momentum	texts.		Solve numerical
space wave function.	uncertainty			problems using the
2.9 State and explain position-	principle.			equation.
momentum uncertainty				
principle. 2.10 Explain [i] probabilistic				Ask the students to
interpretation and [ii]				explain electron
expectation values.				spin; exclusion
2.11 Explain particle in a box:				principle.
[i] energy levels and [ii]				
wave functions.				
	Explain hydrogen			

2.5	 Explain barrier penetration; tunneling: alpha decay. Explain particle in a three- dimensional box. Explain hydrogen atom: separation of variables; energy; angular momentum; space quantization. Explain electron spin; exclusion principle. Explain particle in a finite potential well; step potential: transmission and reflection probabilities. 	atom: separation of variables; energy; angular momentum; space quantization.				Direct students to explain hydrogen atom: separation of variables; energy; angular momentum; space quantization
General Ob	jectives 3.0 Comprehend gener	al discussion of boun	d states in ar	arbitrary potential	I	
3.2	 Explain [i] continuity of wave function, [ii] boundary condition and [iii] emergence of discrete energy levels. 	Lecture Explain Bound states in an arbitrary potential. Explain quantum mechanics of simple harmonic oscillator-energy levels, energy Eigen functions ground state, zero- point energy and	Lecture notes and reference texts			Ask the students to explain continuity of wave function, boundary condition and emergence of discrete energy levels. Describe quantum mechanics of simple harmonic oscillator- energy levels, energy eigenfunctions ground state, zero-

 principle. 3.4 Explain one-dimensional infinitely rigid box-energy eigenvalues and Eigen functions. 3.5 Describe quantum dot as example; 3.6 Explain quantum mechanical scattering and tunneling in [i] one dimension-across a step potential and [ii] rectangular potential barrier. 	uncertainty principle. Solve numerical examples			point energy and uncertainty principle. Solve numerical problems and give assignment and quiz.
General Objectives 4.0 Comprehend one-d	-		problem	
 4.1 Explain [i] Free particle, and [ii] Particle in a box 4.2 Explain box normalization. 4.3 Derive expressions for free particle in an infinite potential well. 4.4 Derive expressions for particle in a finite potential well. 4.5 Explain the concept of potential: [i] potential with finite walls, [ii] Potential step, and [iii] Potential barrier. 	Lecture Explain the concepts of one- dimensional quantum mechanical problems. Give assignments and quiz. Derive expressions for free particle in an infinite potential well. Give assignments and quiz.	Lecture notes and reference texts.		Direct the students to explain box normalization. Ask the students to explain and derive expressions for free particle in an infinite potential well.
Harmonic oscillator and	Lecture	Lecture		Ask the students to
applications		notes and		derive equations for

[5 1		F 1 ¹ 1 1 ¹	C		1. 1 .
	3.1	Derive equations for linear	Explain and derive	reference		linear harmonic
		harmonic oscillator with	equations for	texts		oscillator.
		explanation.	Linear harmonic			
	5.2	Explain Her mite	oscillator.			Explain Hermite
		polynomials.				polynomials,
	5.3	Explain oscillator wave				oscillator wave
		function	Explain eigenvalue			function, even and
	5.4	Explain even and odd parity	and Eigen function			odd parity states.
		states.	of harmonic			
	5.5	Explain energy of harmonic	oscillator.			Explain eigenvalue
		oscillator.	Solve numerical			and eigenfunction of
	5.6	Describe zero-point energy.	problems and give			harmonic oscillator.
	5.7	Explain Hamiltonian of	assignment and			Solve numerical
		harmonic oscillator in terms	quiz.			problems and give
		of creation and annihilation				assignment and quiz.
		operator.				
	5.8	Explain eigenvalue and				
		Eigen function of harmonic				
		oscillator.				
	5.9	Explain momentum				
		representation for				
		oscillators.				
	5.10	Explain Two coupled				
		harmonic oscillators.				
General	Obje	ctives 6.0 Comprehend quan	tum mechanical prob	lems and solu	utions	
		Explain and derive	Lecture	Lecture		Ask the student to
		expression for Schrödinger		notes and		derive expression for
		equation for spherically	Explain and derive	reference		Schrödinger
		symmetric potential.	expression for	texts.		equation for
	6.2	Describe angular part of	Schrödinger			spherically
		Schrodinger equation:	equation for			symmetric potential.
		Spherical harmonics.	spherically			Solve numerical
	6.3	Describe shapes of orbitals.	symmetric			problems and give
	6.4	Explain radial part of	potential. Solve			assignment and quiz.

	Schrodinger equation and its solution for hydrogen atom, Explain transition probabilities and selection rules.	numerical problems and give assignment and quiz			
	ctives 7.0 Comprehend the a	pplications of Schröd	inger wave e	quation	
	Explain and derive expressions for a particle in one-dimensional square well. Explain rectangular potential barrier and	Lecture Describe angular momentum operators and their Eigen functions	Lecture notes and reference texts.		Direct the students to derive expressions for a particle in one- dimensional square well.
	tunneling.	8			
7.3	Explain spherically symmetric potential,	Explain and derive particle in a			Describe angular momentum operators
7.4	Describe angular momentum operators and their Eigen functions	spherical box and obtain the general results for two			and their eigenfunctions.
7.5	Explain and derive expressions for Schrodinger equation for two interacting particles in spherical coordinates.	particles bound states.	-do-		Solve numerical problems and give assignment and quiz
7.6	Explain free particle radial function.		uo		
7.7	Explain and derive particle in a spherical box.				
7.8	Explain spherical potential well of finite depth.				
7.9	Derive general results for two particles bound states.				
7.10	Concept of spin, Hydrogen				
	atom				

HND II SEMESTER 1

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Advanced Equipment Maintenance and Repairs	Code: PYE 411	Contact Hour: 4 Hours/week
Credit unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 2	Semester: First	Practical: 2 Hours/week

Course main Goal: this course is designed to enable students repair and maintain modern laboratory and medical equipment

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Apprehend electronic components and their specifications
- 2.0 Analyze the layout of components on a Vero board and printed circuit Board (PCB)
- 3.0 Apply methods of fault finding/trouble shooting in instruments
- 4.0 Comprehend the generation, classification and packaging of integrated circuits
- 5.0 Comprehend the families of integrated circuits
- 6.0 Outline of major equipment to be maintained/repaired
- 7.0 Outline the classification of major equipment to be maintained/repaired
- 8.0 Outline the troubleshooting procedure of medical and laboratory instrument

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Advanced Equipment Maintenance and Repairs			Code: PYE 411		Credit Unit: 2 Units		
Course specifications: Theoretical contents]	Practical Code: PYE 418		Contact Hours: 2 Hours/Week	
General C	General Objective 1.0 : Apprehend electronic components and their specifications						
Week	Specific Learning	Teacher's	Resour	rces	Specific Learning	Teacher's	Evaluation
	Outcomes	Activities			Outcomes	Activities	
	1.1 Explain the colour	Explain the four	Resisto	ors,	Electronics	Obtain the	Give the colour
	codes of resistors	and five band	capacito	ors,	Components	actual value of	code of two

and capacitors	colour coding	inductors,	*Identify the following	resistors using	resistors whose
1.2 State the areas of	systems on	diodes(Zener	electronic components	the colour codes	values are
application of	resistors and		in relation to their	Compare the	$20K\pm5\%$
		diodes, LED,			
resistors. Inductors	capacitors and the	photo diodes,	symbols types, rating,	calculated value	$0.5\Omega \pm 1\%$
and capacitors	numbering	tunnel diodes,	colour coding/values,	with the	Fully identify the
1.3 Explain the method	systems on	varactor diodes	and areas of	observed value	component
of identification of	semiconductors	etc)	applications: [i]		represented by
semiconductor		transistors(BJT,	resistors [ii] capacitors		the code
components using		UJT, FET)	[iii] inductors [iv]		BC108B
the JEDEC, JIS and		Silicon	diodes (Pn-junction,		
PROELECTRON		controlled	zener, tunnel, LED) [v]		
numbering systems.		rectifiers	transistors (BJT,		
1.4 Explain the method		(SCR),	FET,UJT) [vi] Silicon		
of identification of		ICs such as	controlled rectifier		
integrated circuits		7400, 7408,	(SCR) [vii] dial [viii]		
and logic gates.		7432 etc	Triac [ix] integrated,		
			circuit, operational		
			amplifier logic gates,		
			rectifiers, regulators etc		
			[x] transformers		
			*Test, using		
			appropriate		
			instruments, the		
			conditions of		
			components listed in		
			1.1 above.		
			*Obtain necessary		
			information on		
			components listed in		
			1.1 above using data		
			books.		
General Objectives 2.0 Analyze the	layout of componer	nts on vero board	-	d (PCB)	
2.1 List out different	Explain the	Vero board,	*Identify different	Explain the	Why do we
types of circuit	wiring techniques	bread board,	types of boards such as:	specific uses of	describe the

	 boards. 2.2 Explain the areas of application. 2.3 Explain the process of conversion of circuit diagram to a layout/lay diagram. 2.4 Explain the procedure of fabricating PCB 	of vero board and bread board Explain why the bread board is called the solderless board and the advantages	matrix board, PCB, Push pull amplifier circuit with associated components	 [i] vero board [ii] bread board [iii] matrix board and [iv] printed circuit board (P.C.B) *Explain the specific uses of boards listed above. *Explain the layout of components on a vero board from a given circuit diagram. *Layout components on a vero board for a given circuit diagram of: [i] push-pull power amplifier stage (involving use of heat sink [ii] regulated power supply unit and 	board listed in column 5 Explain the layout procedure of components on a printed circuit board for a given circuit diagram.	breadboard as the solderless board? What are the advantages over the vero board?
	Dejectives 3.0 Apply the m					
Week	Specific Learning Outcomes	Teacher's Activities	Resources	Specific Learning Outcomes	Teacher's Activities	Evaluation
			T 41 1			Tist and south:
	3.1 Explanation of the	Explain the	Textbook	*Demonstrate the two	Carry out	List and explain
	term trouble	necessary steps in	Lab-manual,	general methods of	experiment to	the four types of

3.2	shooting. Explain the general steps in trouble	troubleshooting. Explain the static and dynamic tests	data books and manufacture's manual and	fault-finding: [i] static testing (point to point testing) [ii] dynamic	determine a faulty module in an	dynamic test. Explain the steps in
	shooting. Classify fault finding techniques		faulty radio receiver	testing (signal injection) *Identify different	instrument. Carry out static test using	troubleshooting decoding circuits.
3.4	Explain static and dynamic tests.			functional blocks (section) of an	multimeter to detect faulty	
	Identify the forms of dynamic test such as [i] input to output [ii] output to input [iii] half split method and [iv] random test method Explain different troubleshooting methods of [i] simple gate circuits [ii] decoding circuits and [iii] counters etc	Use diagrams to explain troubleshooting procedure of logic gates and decoding circuits		equipment from the manufacturers' circuit diagram. *Locate test points from the manufacturers circuit diagram. *Carry out point-to- point-testing (static) on equipment such as: [i] power supply unit [ii] radio receiver and [iii] signal generator etc. *Carry out dynamic testing using signal	components such as transformer, capacitor, transistor, diodes etc	
				injection on equipment listed above		
		-		ckaging of integrated circ	cuits	
	Define integrated circuits.	Explain method of identification	Sample of different types	Carry out physical identification of	Carry out practical on	Explain the steps in identifying a
	Describe the advances and generations of integrated circuits.	of different IC families	and families of integrated circuits e.g. 555 timer, op amp 741, 7400	different families of ICs	physical identification of families of ICs	given IC.
	Explain the classifications of		series etc.			

 integrated circuits. 4.4 Describe the packaging of integrated circuits. 4.5 Explain the design, operation and specification of 555 timer IC. 4.6 Describe the design and operation of operational amplifiers. 4.7 Give an overview of 7400 series IC 4.8 Describe the design and operation of INTEL 4004 IC. 4.9 Explain the behaviour and derivatives of MOS 6502 IC. 4.10 Explain the operation and application of microprocessors and microcontrollers. 	Identify different classes packaging and pin arrangements of ICs. Give an overview of 7400 series IC, Understand the design and operation of INTEL 4004 IC and explain the behaviour and derivatives of MOS 6502 IC.	Lecture notes, reference texts and materials.		Ask students to identify different classes packaging and pin arrangements of ICs. Direct students to give an overview of 7400 series IC, Understand the design and operation of INTEL 4004 IC and explain the behaviour and derivatives of MOS 6502 IC.
General Objectives 5.0 Comprehend			ng procedures of ICs	Enclose the st
5.1 Explain the term	Explain	Lecture notes, reference texts		Explain the steps
Troubleshooting	troubleshooting			in carrying out
5.2 Explain different troubleshooting	and procedure of troubleshooting	and materials.		troubleshooting

methods and operation of [i] simple gate circuits simple logic circuit [ii] decoding circuits and [iii] Troubleshooting counters	integrated circuits	Diagrams and charts.		
General Objectives 6.0 Outline of m	ajor equipment to l	be maintained/re	paired	
6.1 Classify the instruments to be maintained into: [i] optical equipment [ii] electromechanical equipment [iii] heating equipment [iv] physical measuring equipment [v] high tech equipment and [vi] separation equipment [vii] biomedical equipment in each class and briefly state their uses.	Give one example of each group and explain the operation and uses	Use drawing and chart to explain the operation and uses of each		Ask students to classify the instruments to be maintained into: [i] optical equipment [ii] electromechanical equipment [iii] heating equipment [iv] physical measuring equipment [v] high tech equipment and [vi] separation equipment [vii] biomedical equipment and List out five equipment in each class and briefly state their uses.

General Objectives 7.0 Recognize the Troubleshooting procedure for laboratory and medical equipment									
(A) Optical	Explain the	Allen keys	Identify component	Carry out	Ask the students				
Instruments	features of the	Set of precision	parts of the microscope	troubleshooting	to identify and				
7.1 List out optical	named optical	drivers	Dismantle a microscope	of the faulty	explain which				
instrument	equipment	An optical	and clean the lenses	microscope	parts of the				
7.2 Explain the working principles of instruments listed in 7.1 above		microscope			microscope requires greasing at intervals				
7.3 List out possible fault and their		Centrifuge and		Carryout test to					
symptoms	Explain the	set of screw		determine the	Direct the				
7.4 Draw the trouble- shooting table.	features of the named	drivers		faulty part of the instrument	students to state and describe the				
7.5 Repair a sample of optical instrument eg microscope	electromechanical instrument eg centrifuge		Identify a faulty section of the centrifuge		likely cause of the fault if the centrifuge motor				
(B) Electromechanical instruments					rotates at a slow speed				
7.6 List out									
electromechanical instruments used in the lab				Carryout	Ask the students				
7.7 Explain the working				troubleshooting	to identify the				
principles of the instruments listed in 7.6	Explain the features of the named Heating	Laboratory oven and tool kit		exercise to determine the part (s) that had	components that may have failed if the temperature				
7.8 List out possible faults in 7.6 above and their symptoms.	instrument Laboratory incubator Explain the			failed	of the incubator overshoots the preset values				
7.9 Draw the trouble	possible causes of								

shooting tab	defect				
7.10 Repair a					
an electrom	1				
instrument.	cenanical		Explain the features of		
liisti uiiteitt.			the laboratory incubator		
(C) Heating			5		
Instruments					
7.11 List out h	neating				
equipment u	used in the Identify the	Tool kit and a	Identify the faulty	Conduct test to	Direct the
lab eg incub		faulty	section of the oven	ascertain the	students to
autoclave et	c. of the colorimeter	colorimeter		cause of the	explain what may
7.12 Explain t	he working			defect	likely cause
principles of	f the				instability in the
instruments	listed in				output reading of
7.11 above.					the instrument.
7.13 List out p	possible				
faults in 7.1	1 above				
and their syn	mptoms				
7.14 Draw the	trouble-				
shooting tab	ole.				
7.15 Repair a	sample of				
heating equi	ipment eg.				
Incubator, w	vater bath				
etc					
	Identify the	Tool kit,	Identify the component	Troubleshoot a	
(D) Physical I Instrument	e empenerie parts	multimeter and	parts of the equipment.	faulty flame	Ask the students
7.16 List out p	of the instrument.	a flame		photometer to	to explain how a
measuring e	2	photometer	Troubleshoot a faulty	identify a faulty	fault in the
Ū.			colorimeter	module	atomizer may be rectified
7.17 Explain t principles of	0				recurred
instruments					
	listed in				
7.16 above.					

 7.18 List out possible faults in 7.16 above and their symptoms. 7.19 Draw the trouble- shooting table. 7.20 Repair a sample of physical measuring equipment eg. PH meter, conductivity meter, colorimeter etc. 7.21 List out some high tech analytical equipment.eg flame photometer, UV-VIS spectrophotometer, AAS etc. 7.22 Explain the working principles of the 	Explain the working principles of the electrophoreses instrument. Explain the possible cause of defects in the operation of the instrument	A tool kit and an electrophoreses instrument		Troubleshoot the instrument using the necessary facilities	Instruct the students to explain What may likely be the cause of the burning of the cellulose paper in the course of the experiment.
 instrument listed in 7.21 above. 7.23 List out possible faults in 8.21 above and their symptoms. 7.24 Draw the troubleshooting table 7.25 Repair a sample of high tech analytical instrument eg AAS, Flame photometer, UV-VIS Spec etc. 7.26 List out some 	List the functional parts of the Elisa reader. Explain the fault symptoms of the instrument	Elisa reader	Identify the component parts of the equipment. Troubleshoot a faulty flame photometer	Troubleshoot the instrument using the necessary facilities	Direct the students to what may likely be the result of instability in the output of the instrument.

 separation equipment. 7.27 Explain the working principles of the instrument listed in 7.26 above. 7.28 List out possible faults in 8.26 above and their symptoms. 7.29 Draw the troubleshooting table 7.30 Repair a sample of high tech analytical 	Lecture notes, reference texts and materials.	Identify the component parts of the instrument Identify the fault in the equipment Identify the component parts of the instrument	Direct students to list out possible faults and their symptoms. Ask students to draw the troubleshooting table and repair a sample of high tech analytical
instrument eg GLC, HPLC.		Identify the fault in the	instrument e.g. GLC, HPLC.
(F) Biomedical		equipment	olle, in Le.
Equipment			
7.31 List out some biomedical equipment.			Direct the
7.32 Explain the working			students to explain List out
principles of the			some biomedical
instrument listed in			equipment and
7.28 above. 7.33 List out possible			explain the working
faults in 7.28 above			principles of the
and their symptoms.			instrument listed
			in 7.28 above. List out possible

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Instrumentation	Code: PYE 412	Contact Hour: 4 Hours/week
Course unit:2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 2	Semester: First	Practical: 2 Hours/week

Course main Goal: this course is designed to enable students use various electrical/electronic instruments, their construction, applications, and principles of operation, standards and units of measurements; and provide students with opportunities to develop basic skills in the design of electronic equipment.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Comprehend the classification and general uses of analogue and digital Instruments
- 2.0 Outline the principle of operation and application of analogue (pointer) instruments
- 3.0 Outline the principle of operation and application of analogue (graphical) instruments
- 4.0 Outline the principle of operation and application of digital instruments
- 5.0 Outline the characteristics of Measuring Instruments
- 6.0 Appreciate the composition of a measuring instrument systems
- 7.0 Outline the importance of static and dynamic performance of measuring systems

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Instrumentation			PYE 412	(Credit Units: 2 Units			
Course specifications: Theoretical contents			al Code: PYE 418	(Contact Hours: 2 Hours/Week			
General	General Objective 1.0 Comprehend the classification and general uses of analogue and digital instruments							
Week	Specific Learning Outcomes	Teacher's	Resources	Specific	Teacher's	Evaluation		
		Activities		Learning	Activities			
				Outcomes				

Ana	logue and Digital Instruments	Explain the	Textbook	Demonstration	Direct the
1.1	Define [i] analogue	difference between	Lab-manual		students to
	instruments [ii] digital	analogue and			explain the
	instruments.	digital instruments.			differences
1.2H	Explain the classification of	Group each type of			between
	analogue instruments into: [i]	instrument above			analogue and
	Pointer – type	and list out its			digital
	[iii] graphical – type [iv]	applications.			instrument.
	classify instruments into	Discuss the uses of			
	types, ie. Indicating, recording	instruments in 1.6			
	and controlling	Explain the			
	instruments.	concept of hall			Ask the
1.3	Explain the sub-classification	effect.			students to
	of analogue (pointer)				explain the
	instruments into: [i]				general uses of
	electromechanical instruments	Explain why UV,	Lecture notes,		Q meter and list
	and [ii] electric instruments.	potentiometer,	reference texts		types of
1.4	List types of	moving coil	and materials.		electromechanic
	electromechanical instruments	recorders are			al instruments
	such as [i] moving coil	grouped into			and their
	instrument; [ii] moving iron	analogue			general
	instruments [iii]	instrument.			applications of
	electrodynamics instruments				each
	[iv] rectifier instruments [v]				instruments.
	electrostatic instruments; and				
	[v] energy meters.				
1.5	Explain the general				Direct students
	applications of each				to list types of
	instruments listed in 1.4				electronic and
	above.				describe the
1.6	List types of electronic				general uses of
	instruments such as: [i] dc				each instrument
	Voltmeter; [ii] ac voltmeter;				listed.
	[iii] null detector [iv] "Q"				

 meter and [v] Hall effect devices. 1.7 Describe the general uses of each instrument listed in 1.6 above. 1.8 Classify analogue (graphical) instruments into:- (i) Moving coil recorders (ii) Potentiometer recorders; [iii] X-Y plotters (iv) UV recorders; C.R.O. 					Ask the students to classify analogue (graphical) instruments.
General Objectives 2.0 Outline the principle	e of operation and ap	plication of analog	ue (pointer) inst	ruments	
Analogue (Pointer) Instruments	Describe the mode	Demonstration	*Determine	Conduct	Direct the
2.1 Explain the principle of	of operation of a	using charts and	the inductive	practical to	students to
operation and construction of	moving coil	diagrams,	properties of	determine the	describe the
a moving coil instrument.	instrument.	Q-meter, Hall	an inductor	inductive and	constructional
2.2 Describe the application of a	Relate the	effect meter,	using a Q-	capacitive	features of a
moving coil instrument as; [i]	instruments above	capacitors,	meter.	properties of a	moving coil
a galvanometer, [ii] an	to ammeter,	inductors, source	*Determine	capacitor using	instrument.
ammeter [iii] a voltmeter and [iv] a multimeter	voltmeter, and multimeter.	of magnetic field etc.	*Determine the	Q-meter Conduct	
2.3 Explain the principle of	multimetel.		capacitance of	practical to	
operation of a moving iron			a capacitor	measure the	
instrument.			using Q-	strength of	
2.4 Explain the application of a			meter.	applied	

 moving iron instrument as: [i] an ammeter [ii] a voltmeter and [iv] a power factor meter 2.5 Explain the principle of operation of the electrodynamics instrument. 2.6 Explain the application of the electrodynamics instrument as: [i] an Ammeter [ii] A Voltmeter [iii] a wattmeter and [iv] a power factor meter 2.7 Explain the principle of operation of the rectifier instruments. 2.8 Explain the application of the rectifier instruments as: [i] an ammeter [ii] a voltmeter and [iii] a multimeter 2.9 Explain the principle of operation of the null detector 2.10 Explain the application of the null-detector as a phase sensitive detector 2.11 Explain the principle of operation of the Q-meter 2.12 Explain the application of the Q-meter for the [i] determination of inductor properties and [ii] determination of capacitor 	Demonstration Lecture Discuss how electrodynamics, rectifier, null detector instruments and Q- meter work. List out their uses	Explain the application of the electrodynamics instrument as: [i] an Ammeter [ii] A Voltmeter [iii] a wattmeter and [iv] a power factor meter. Explain the application of the Q-meter for the [i] determination of inductor properties and [ii] determination of capacitor properties	Determine the strength of an applied magnetic field using Hall effect meter	magnetic field	Direct the students to determine the strength of an applied magnetic field using Hall effect meter.
properties General Objectives 3.0 Outline the principle	of operation and an	plication of analog	ue (graphical) in	Istruments	<u> </u>
Analogue (graphical)	Discuss the	Cathode ray	*Demonstrate	Conduct	Instruct the
Instruments:	applications of	oscilloscope,	in practical	practical to	students to

3.2 3.2 3.4 3.4 3.6 3.6 3.7	 applications of the moving coil recorder. Explain the principle of operation of the potentiometer recorder. State some specifications and applications of the Potentiometer recorder. Explain the principle of operation of the X-Y plotter. State some specifications of the X-Y plotter. Explain the principle of operation of UV recorder. State some specifications and application of the UV recorder. Explain the principle of operation of a cathode ray oscilloscope. State some specifications and application of the cathode ray 	Moving coil recorder, potentiometer recorder, X-Y plotter, UV recorder cathode ray oscilloscope.	Signal generator	terms the use of cathode ray oscilloscope * Observe the shapes of waveform using CRO Measure the frequency, amplitude and phase of a wave form using CRO	demonstrate the use of CRO to measure frequency, amplitude and phase of a waveform.	explain the operation of the potentiometer recorder. Instruct the students to explain the principle of operation of a cathode ray oscilloscope. State some specifications and application of the cathode ray
	oscilloscope.					oscilloscope.
	pjectives 4.0 Outline the principle			instruments		
	igital Instruments	Demonstration	Lecture notes			Ask students to
4.1	Explain the construction and	Relate frequency,	reference texts			explain
	principle of operation of a	period and time	and			advantages of
	digital counter	measurements to	demonstration			successive
4.2	2 State some specifications	digital counter	using diagrams			approximation
	(features) of digital counter.	mechanism	and charts			ADC over the

4.3 Explain the application digital counter for: [i			ramp ADC.
frequency measurem			
period measurement			
time measurement (d	E 3		
clock)	digital system.	0	
4.4 Explain the methods	0,		
the conversion of an			
to digital signal such			Direct students
successive and appro			to explain the
method (using ladde	0		methods used
[ii] ramp method or	, 1		for the
time conversion tech	8		conversion of
[iii] voltage to freque	1		an analogue to
methods.	digital signal, the		digital signal,
4.5 Explain the principle			the principle of
operation of a digital	l voltmeter. operation of a		operation of a
4.6 State some character	ristics of digital voltmeter		digital
digital voltmeter.	and state some		voltmeter and
4.7 Explain the applicati			state some
digital voltmeters for	-		characteristics
Voltage measuremen	nt		of digital
			voltmeter.
General Objectives 5.0 Outline t		0	
5.1 Explain the factors a	e	Lecture notes,	Direct students
instrument selection	6	reference texts	to explain the
accuracy precision, r		and materials.	classification of
sensivity and range r		S	errors in
cost, static and dyna	<u> </u>		measuring
response, environme			instruments.
of output.	Explain the		
5.2 Classify the causes of			
measuring system in			
manufacturing errors	s [ii] measuring		

design errors [iii] operating	systems.			
error [iv] environmental errors				
and [v] application errors.				
5.3 Explain the importance of				
calibration				
General Objectives 6.0 Appreciate the comp	osition of a measuri	ng instrument syste	ems	
6.1 Explain the importance of	Lecture with	Lecture notes,		Direct the
basic components of an	examples	reference texts		student to
instrument system i.e. (i)		and materials.		explain the need
sensing element (ii)	Explain the			for transducers
amplifying element (iii)	importance of			in measuring
signal modifiers or converters	basic components			instruments and
and (iv) display.	of an instrument			to list types of
6.2 State examples of sensing	system.			digital display
elements (transducer)				methods and six
commonly used.				types of digital
6.3 Describe broad classes of	Explain the term			display devices.
transducers e.g. electrical,	transducer and			Explain the
mechanical, pneumatic etc.	classes of			operation of
6.4 Explain the principle of	transducer.			each.
operation of various types of	Explain the factors	-do-		
transducers.	affecting			
6.5 Explain factors for selecting	transducers.			Direct students
transducers for measuring				to give
purposes e.g. nature of				examples of
measurement, environmental				signal
consideration, cost availability	Give example of			converters,
etc.	signal converters,			explain the
6.6 State examples of simple	explain the			principle of
electrical, hydraulic and	principle of			operation of
mechanical amplifying	operation of signal			signal
elements	converters and			converters and
6.7 Explain the principles of	give the practical			give the
operation of each class of	application of each			practical

 amplifying element listed in 2.6. 6.8 State examples of signal converters (e.g. a rack and pinion gear, a bridge circuit or charger amplifier etc.) 6.9 Explain the principle of operation of each class of signal converters in 2.8 above. 6.10 State areas of application of each type of signal converter. 6.11 State examples of display units. 6.12 Describe broad classification of display e.g. analog and digital. 6.13 Explain the principle of operation of the various types of display unit. 6.14 Describe the factors considered in selecting display unit for measuring purposes. 6.15 List the features of various types of digital display devices 	type of signal converter. Explain the classification of and the principle of operation of the various types of display unit. Describe the factors considered in selecting display unit for measuring	Lecture notes, reference texts and materials.		application of each type of signal converter. Ask students to explain the classification of and the principle of operation of the various types of display unit. Describe the factors considered in selecting display unit for measuring purposes
and digital display methods	purposes			
General Objectives 7.0 Comprehend the con		ring instrument sys	stems	·
 7.1Explain the importance of basic components of an instrument system i.e. [i] sensing element [ii] amplifying element iii] signal modifiers or converters and [iv] display. 7.2State examples of sensing elements (transducer) commonly 	Lecture with examples Explain the importance of basic components of an instrument system i.e. [i]	Lecture notes and reference texts.		Ask students to explain the importance of basic components of an instrument system i.e. [i] Sensing element

used.	Sensing element			[ii] amplifying
7.3 Describe broad classes of	[ii] amplifying			element [iii]
transducers e.g. electrical,	element [iii] signal			signal modifiers
mechanical, pneumatic etc.	modifiers or			or converters
7.4 Explain the principle of	converters and [iv]			and [iv] display.
operation of various types of	display.			
transducers.				
7.5 Describe factors for selecting				Ask students to
transducers for measuring purposes				explain factors
e.g. nature of measurement,	Explain factors for			for selecting
environmental consideration, cost,	selecting			transducers for
availability etc.	transducers for			measuring
7.6 State examples of simple	measuring			purposes e.g.
electrical, hydraulic and	purposes e.g.	-do-		nature of
mechanical amplifying elements.	nature of			measurement,
7.7 Explain the principles of	measurement,			environmental
operation of each class of	environmental			consideration,
amplifying elements listed in 2.6.	consideration,			cost,
7.8 State examples of signal	cost, availability			availability etc.
converters (e.g. a rack and	etc.			
pinion gear, a bridge circuit or				
charger amplifier etc.).				
7.9 Explain the principle of				
operation of each class of				
signal converters in 2.8 above.				
7.10 State areas of application of				
each type of signal converter.				
7.11 Give examples of display				
units.				
7.12 Explain board classification				
of displays e.g. analog and				D: 1 .
digital.				Direct student
7.13 Explain the principle of				to explain the
operation of the various types				factors

of display unit. 7.14 Explain factors considered in selecting display unit for measuring purposes. 7.15 Explain the features of various types of digital display devices and digital display methods	Explain factors considered in selecting display unit for measuring purposes.	considere selecting display un measurin purposes.	nit for g
---	--	---	--------------

PROGRAMME: HIGHER NATIONAL DIPLOMA SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Radio Communication Principles	Code: PYE 413	Contact Hours: 1 Hours/week
Credit unit: 1 Unit	Pre-requisite:	Theoretical: 1 Hours/week
Year: 2	Semester: First	Practical: 0 Hours/week

Course main Goal: this course is designed to enable students have knowledge and understanding of the fundamental problems of radio communication in various radio propagation environments and the basics of contemporary wireless communication systems.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Appreciate frequency distribution in radio spectrum
- 2.0 Outline the principles of electromagnetic wave radiation
- 3.0 Outline the principles of radio wave propagation
- 4.0 Appreciate the principles of modulation and demodulation
- 5.0 Recognize the working principles of Radio Transmitter
- 6.0 Recognize the working principles of radio receiver

		FIONAL DIPLOM	A SCIENCE	LABORATORY T	TECHNOLOG	GY (PHYSICS WITH	
	ELECTRONICS)						
	Title: Radio Communication		Code : PYE 413		Credit Unit		
	specifications: Theoretical c		Practical Code:		Contact Ho	urs: 1 Hours/Week	
	Objective 1.0 Appreciate v					1	
Week	Specific Learning	Teacher's	Resources	Specific Learning		Evaluation	
	Outcomes	Activities		Outcomes	Activities		
	1.1 Radio frequency	Lecture and	Lecture notes,			Give	
	spectrum	demonstrate.	reference texts			assignments on 1.1, 1.2	
	1.2 List the		and materials.			and 1.3	
	frequency/wavelength	Explain the					
	ranges allocated to	application					
	each of the following	of each frequency					
	bands: [i] extremely	range in 1.2					
	low frequency (ELF),						
	[ii] very low						
	frequency (VLF) [iii]						
	low frequency (LF),						
	[iv] medium						
	frequency (MF), [v]						
	high frequency (HF)						
	[vi] ultra-high						
	frequency (UHF), [vii]						
	super high frequency						
	(SHF) [viii] extremely						
	high frequency (EHF). 1.3 State the areas of						
	application of each						
	frequency range listed						

above.				
General Objectives 2.0 Outline the	principles of electron	magnetic wave rad	liation	i
Ceneral Objectives 2.0 Outline the2.1 Electromagnetic wave radiation and aerials.2.2 Define an isotropic radiation.2.3 Describe the function of an aerial as a radiation source.2.4 Explain the current and voltage	Lecture with worked examples. Explain what an Isotropic radiation means. Explain the parameters in 2.5	Lecture notes, reference texts and materials.		Ask students to explain electromagnetic wave radiation and aerials. State the function of an aerial as a radiation source.
distribution of a dipole. 2.5 Define the following parameters of an aerial: [i] gain [ii] bandwidth [iii] effective radiated power [iv] radiation resistance and [v]		-do-		Direct the students to define the following parameters of an aerial: [i] gain [ii] bandwidth [iii] effective radiated power [iv] radiation resistance and [v] impedance.
 impedance. 2.6 Explain with the aid of a sketch, radiation pattern of an aerial. 2.7 Identify various types of aerials e.g. yagi, parabolic, etc. 2.8 State the area of the aerial mentioned 	List various types of aerials and discuss factors to be considered in the choice of aerials.			Explain with the aid of a sketch, radiation pattern of an aerial. Give class assignment on the factors guiding the choice of aerials.
 actual inclusioned above. 2.9 Describe the factors guiding the choice of aerials. 2.10Explain the effect of 	Discuss the importance of frequency on arial dimensions and performance.			

operating frequency on aerial dimensions and performance.				
General Objectives 3.0 Outline the	principles of radio v	wave propagation	l	
Radio Wave Propagation	Lecture.	Lecture notes, reference texts and materials.		Ask the students to describe the following
following types of waves: [i] ground	Explain the various types and characteristics of radio waves.	and materials.		types of waves: [i] ground waves [ii] sky waves and [iii] space waves.
3.1 Describe the composition and usefulness of the troposphere in propagation	Discuss the importance of troposphere in radio wave propagation.			Ask the students to explain the importance of troposphere in radio wave propagation.
3.3 Explain the various layers of the	Discuss the various frequencies at which radio waves can be propagated.	-do-		
layers. 3.4 Explain the following types of operating propagation frequency: [i] critical frequency [ii]	Explain the relevance of radio wave propagation in broadcasting etc.			Give class assignment on the composition and usefulness of the troposphere in propagation.

3.6 Describe radio wave				
propagation for				
different applications				
such: [i] broadcasting				
and [ii] paint to paint				
communication, etc.				
General Objectives 4.0 Appreciat	e the principles of m		nodulation	
Modulation and		Lecture notes,		Ask students
demodulation	Lecture with	reference texts		to distinguish between
4.1 Explain modulation.	worked	and materials.		carrier and modulating
4.2 Distinguish between	examples.			signals and to describe
carrier and				the formation as: [i] an
modulating signals.				amplitude-modulated
4.3 Describe the	Discuss			carrier [ii] a frequency-
formation as: [i] an	modulation.			modulated carrier [iii] a
amplitude-modulated	Explain the types			pulse-modulated
carrier [ii] a	of signal carriers.			carrier.
frequency-modulated	List out their			
carrier [iii] a pulse	advantages and			
modulated carrier.	disadvantages.			Direct the students to
4.4 State the merits and	Sketch a sine wave			sketch a properly
demerits of AM, and	for (i) AM wave			labeled [i] sine wave
FM signals.	pathern, (ii)			amplitude modulated
4.5 Explain the	PM wave			waveforms, [ii] pulse
application of AM	characteristics.	-do-		amplitude modulated
and FM signals.	characteristics.	uo		waveforms.
4.6 Sketch a properly				waveforms.
labeled [i] sine wave	Explain			
amplitude modulated	Demodulation.			
waveforms, [ii] pulse				
amplitude modulated				Ask the student to
waveforms.				explain demodulation"
4.7 Explain how to obtain				as the re verse process
frequency spectrum				of modulation.
incluency specifium				or mountanon.

and bandwidth of an amplitude-modulated waveform produced from given (i) sine wave modulating frequency [ii] speech modulating frequencies. 4.8 Explain demodulation" as the re verse process of modulation.				
General Objectives 5.0 Recognize t	he working principle	es of radio transm	itter	
Radio Transmitter	Lecture.	Lecture notes,		Instruct the students to
5.1 Draw a labeled block	Leeture.	reference texts		draw a labeled block
diagram of an	Discuss the	and materials.		diagram of an
amplitude modulated	principles involved			amplitude modulated
(AM) transmitter.	in frequency			(AM) transmitter and
5.2 Explain the function	multiplication in			explain the function of
of each stage above.	radio			ach stage mentioned
5.3 Explain the	transmitters.			above and the
significance and				significance and
principles of	Explain the			principles of frequency
frequency	circuitry			multiplication in radio
multiplication in radio	associated with			transmitters.
transmitters.	amplitude –			
5.4 Describe the circuit to	modulated	-do-		
produce AM signals.	signals.			Direct the students to
5.5 Describe the need for				describe the circuit to
an amplifier driver	Discuss how a rf			produce AM signals,
stage.	frequency power			the need for an
5.6 Describe the operation	amplifier with			amplifier driver stage
of a simple power	aerial –			of a simple power
amplifier with aerial.	amplifier			amplifier with aerial,
5.7 Describe the operation	arrangement.			the operation of a

of a simple of power amplifier with aerial coupling arrangement. 5.8 Describe practical procedures for matching an aerial to a radio transmitter.				simple power amplifier with aerial coupling arrangement and practical procedures for matching an aerial to a radio transmitter			
General Objectives 6.0 Recognize t	01 1		er	T (1) (1) (1) (1) (1)			
 6.1 Draw a labeled block diagram of a straight radio receiver. 6.2 Describe the function of each stage of the straight radio receiver such as [i] r.f variable - tuned amplifier [ii] demodulator [iii] a.f amplifier. 6.3 Explain, with the aid of simple circuit 	Lecture with the aid of a diagram: [i] Straight radio receiver [ii] circuit arrangement of (a) r.f. variable – tunned amplifier. (b) demodulator (c) a.f. amplifier feeding loud speakers.	Lecture notes, reference texts and materials.		Instruct the students to draw a labeled block diagram of a straight radio receiver explaining each stage of the receiver.			
 arrangement, the compositions and mode of action of the following: [i] r.f variable tuned amplifier, [ii] demodulator and [iii] a.f amplifier feeding loudspeaker. 6.4 Describe some of the limitations of the straight radio receiver such as: [i] ganging multiple r.f. signals 	Lecture and solve	-do-		Ask the students to explain, with the aid of simple circuit arrangement, the compositions and mode of action of the following: [i] r.f variable tuned amplifier, [ii] demodulator and [iii] a.f amplifier feeding loudspeaker.			
		 6.7 Describe the characteristics and circuit arrangement of: [i] i f. amplifier and [ii] a local oscillator. 6.8 Explain the problem of second channel 	radio receiver. Discuss with the aid of a diagram: [i] the working principle of superheterodyne radio receiver and [ii] i.f amplifier and an oscillator				Direct the students to explain the choice of intermediate frequency (i.f.), describe the characteristics, and circuit arrangement of: [i] i.f. amplifier and [ii] a local oscillator.
--	--	---	--	--	--	--	--
--	--	---	--	--	--	--	--

Course Title: Computational Physics	Code: PYE 414	Contact Hour: 1 Hours/week
Credit unit: 1 Unit	Pre-requisite:	Theoretical: 1 Hours/week
Year: 2	Semester: First	Practical: 0 Hours/week

Course main Goal: This course is designed to enable student develop skill to apply numerical analysis to solve problems or support theories in Physics/Electronics.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Apply error analysis and numerical integration in data analysis
- 2.0 Appreciate Deterministic randomness, interpolation and extrapolation of a given variable
- 3.0 Apply Monte Carlo methods in solving transfer equations problems
- 4.0 Apply Root finding methods in solving complex equations problems
- 5.0 Appreciate derivatives using finite difference method
- 6.0 Recognize system of linear equation and commercial subroutine libraries
- 7.0 Apply ordinary differential equations and partial differential equation in solution to variable systems
- 8.0 Apply hyperbolic equations and conservative methods in solving problems in systems
- 9.0 Apply Fourier transform in predicting stability of systems

Course	Title: Computational Physics	Code: PYE 414		Credit U	Credit Units: 1 Unit		
	specifications: Theoretical contents				Contact Hours: 1 Hours/Week		
General Objective 1.0 Apply error analysis and numerical integration in data analysis							
Week	Specific Learning Outcomes	Teacher's Activities Resources		Specific	Teacher's	Evaluation	
				Learning	Activities		
				Outcomes			
	Define error and precision.	Explain methods of	Textbook			Direct the students	
	1.1 Explain the relationship	error combination of	Lab-manual			to explain the	
		dependent and				applications of	

between error and precision 1.2 Explain methods of combination of errors 1.3 Explain stability in Computational Physics 1.4 Explain the following methods of numerical integration [i] Trapezoidal [ii] Simpson [iii] Bode rules [iv] Open and semi-open formulae and [v] Gaussian quadrature.	independent quantities Explain the trapezoid and Simpson's rule			Simpson's rule in solving buoyancy and stability problems when designing marine vessel.
General Objectives 2.0 Appreciate determin			trapolation	
 2.1 Describe Random Error generators. 2.2 Explain the following forms of Deterministic Randomness: [i] linear congruent method [ii] Random walk [iii] non uniform distribution of random numbers [iv] Gussian and arbitrary distribution [v] Von Neumann 	Illustrate the differences in extrapolation and interpolation. Explain Von Neumann rejection technique in sampling.	Lecture notes and reference texts.		Ask students to explain the purpose of Rejection sampling and evaluate a table using Lagrange interpolation formula.
rejection method 2.3 Define interpolation and extrapolation. 2.4 Define the Newton-Gregory forward difference interpolation formula 2.5 Evaluate data using [i] polynomial interpolation [ii] Neville's algorithm [iii] cubic spine [iv] data fitting and [v]	Define the Newton- Gregory forward difference interpolation formula and evaluate data using [i] polynomial interpolation [ii] Neville's algorithm [iii] cubic spline [iv] data fitting and [v] least	-do-		Instruct the students to define the Newton- Gregory forward difference interpolation formula and evaluate data using [i] polynomial interpolation [ii]

least square fits.	square fits.				Neville's algorithm [iii] cubic spline [iv] data fitting and [v] least square fits.
General Objectives 3.0 Apply Monte Carlo	methods in solving trans	fer equations p	oroblems		· · ·
 3.1 Define Monte Carlo Simulation 3.2 What are the areas of application of the Monte Carlo Simulation? 3.3 Explain the following; [i] integration by rejection and [ii] integration by importance sampling Integration by Von Neumann rejection 	Solve problems involving integration by rejection Illustrate the area of application of Monte Carlo simulation	Lecture notes, reference texts and materials.			Direct the students to explain Monte Carlo simulation Explain how Monte Carlo simulation provides an efficient way to simulate processes involving chance
					and uncertainty
General Objectives 4.0 Apply root finding n			roblems		
 4.1 Apply root finding and equation solving in: [i] bracketing [ii] Bisection [iii] Secant [iv] false position and [v] Newton Raphson methods in computational physics 	Apply Newton- Ralphson iteration formula to nonlinear equations	Lecture notes, reference texts and materials.			Direct students to derive the root of the equation:- $\cos x = x^2$ as accurately as your tables permit.
General Objective 5.0 Appreciate derivative	es using finite difference	method			
5.1 Apply grid method for classical and quantum fields in: finite difference method finite volume method quantum wave equation	Apply the forward, backward and central difference formula in solving related practical problems	Textbook Lab-manual		Demonstration	Ask students to briefly explain the forward differencing method.
General Objectives 6.0 Recognize system of	-	mercial subro	utine libraries	5	
6.0 Define linear equation.6.1 Solve linear equation problems	Solve linear algebraic equations using Gaus-	Lecture notes,			Ask students to derive the solution

	using Gauss- Jordan	Serdel interaction	reference		to a linear equation
	elimination, $\underline{L} - \underline{U}$	methods	texts and		using Gauss-
	decomposition and Eigen		materials.		Jordan elimination
	problems.				method.
	6.2 Define commercial subroutine	Explain developments			
	libraries	in commercial			D: (1) (
	6.3 Explain the principles of code	subroutine libraries.			Direct students to
	optimization in commercial				list out notable
	subroutine libraries				numerical libraries
					used in software
					development for
					performing
					numerical
~					calculations.
Gener	al Objectives 7.0 Apply ordinary diffe		1	ial equation and applications	
	7.1 Identify first and second order	Apply the Laplacian	Lecture		Direct the students
	ordinary differential equation.	concept in polar	notes,		to apply ordinary
	7.2 Identify first and second order	coordinates to partial	reference		differential
	partial differential equation.	differential equation	texts and		equation in
	7.3 Explain the techniques of	problem	materials.		calculating the
	solving first and second order				flow of electricity
	Ordinary differential equation	Demonstrate method of			and explaining
	using [i] Euler method,[ii]	solving first and second			thermodynamic
	Runge- Kutta method, [iii]	order differential			concepts.
	boundary condition, [iv]	equation using Runge-			
	Numerov's method, [v]	Kutta and Euler			
	adaptive stepsize control, [vi]	methods			Ask students to
	Bulirshc-Stoer methods and				explain the
	[vii] order reduction				application of
	7.4 Explain the techniques of	Explain the techniques	-do-		partial differential
	solving [i] first and second	of solving [i] first and			equation in the
	order partial differential	second order partial			mathematical
	equation [ii] finite elimination	differential equation			formulation and
	method and finite volume	[ii] finite elimination			aid the solution to

method.7.5 Apply differential equation in solving problems of [i] nonlinear oscillators, and [ii] Schrodinger equations.7.6 Classify partial differential equation into [i] hyperbolic equation, [ii] parabolic equation and [iii] elliptic equation.7.7 Use parabolic equation to solve diffusion problemsGeneral Objectives 8.0 Apply hyperbolic equation	method and finite volume method and apply differential equation in solving problems of [i] nonlinear oscillators, and [ii] Schrodinger equations.	e methods in so	lving problem	physical problems involving several variables such as propagation of heat and sound.
8.1 Define hyperbolic and flux	Explain these methods	Lecture		Direct students to
conservative method.	of solving elliptic	notes,		explain the use of
8.2 Solve problems in hyperbolic	equation:-	reference		hyperbolic
and Flux conservative equations	Gauss Seidel method	texts and		functions to
using:-	*Jacobi method	materials.		describe the shape
Von Neumann stability	*Successive over			of the curve
analysis	relaxation method			formed by high
Courant-Friederichs-Lewy				voltage line
condition				suspended
Euler (FTCS) method				between two
Staggered Leapfrog method				towers.
Lax method				
Two step lanxWendroff				
method etc				
8.3 Compare Relaxation vs Rapid				
method in solving Elliptic				
equation.				
General Objective 9.0 Apply Fourier transf			I	
9.1 Define Fourier series	Derive the Fourier	Lecture		Direct student to
9.2 Explain periodic functions	coefficient in both	notes,		show how Fourier
9.3 Evaluate the integration of	polar and rectangular	reference		transform may be
Fourier series	forms	texts and		applied in image

9.4 Apply Fourier series to suitable	materials.		analysis, image
engineering problems.			filtering and
			reconstruction

Course Title: Digital Electronics	Code: PYE 415	Contact Hour: 4 Hours/week
Credit unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 2	Semester: First	Practical: 2 Hours/week

Course main Goal: this course is designed to enable students acquire requisite knowledge on digital electronic circuits

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Apply basic knowledge of the concept of digital systems
- 2.0 Appreciate the number systems and their operations
- 3.0 Appreciate Boolean algebra and its simplification
- 4.0 Develop combinational circuits and operate them with logic gates
- 5.0 Apprehend requisite knowledge on flip-flop and digital counters
- 6.0 Apply shift registers for storage of data in digital circuits
- 7.0 Apply signal interfacing, processing and decoding in digital systems
- 8.0 Apprehend knowledge on integrated circuits technology

	RONICS		Code: PYE 415		Credit United 21	Inita	
	Title: Digital Electronics			DVE 410	Credit Units: 2 Units		
	specifications: Theoretical	cal contentsPractical Code: PYE 418Contact Hours: 2 Hours/Weile basic knowledge of the concept of digital systems			2 Hours/week		
	I Objective 1.0 Apply the	0					
Week		Teacher's Activities	Resources	Specific Learning Outcomes	Teacher's Activities	Evaluation	
	1.1 Define the two broad	Lecture and	Lecture notes	Identify different types	Guide student in	Ask the	
	areas of electronic	illustrate	and available	of analogue and digital	the	students to	
	circuits	differences	instruments	instruments used in our	identification of	explain with	
	1.2 Define analogue and	between digital		day-to-day activities	types of	examples a	
	digital electronics	and analogue			analogue and	system that is	
	1.3 Use graphs to	circuits using			digital	analogue in	
	illustrate the	relevant diagrams			instruments	nature and one	
	difference between	and available materials				that is a combination of	
	digital and analogue quantities	materials				both analogue	
	1.4 State the advantages					and digital.	
	of digital systems						
	over analogue						
	systems						
	1.5 Give examples of						
	digital systems						
	1.6 Define bit as used in						
	a binary system						
	1.7 Explain how voltage						
	levels are used to						
	represent bits in digital circuits		Signal	Display both analogue	Guide student	Direct students	
	1.8 Describe the	Show waveforms	generator and	and digital signals and	towards the	to describe the	
	characteristics of a	that are analogue	an oscilloscope	measure their voltage	measurement of	characteristics	
	digital waveform	and those that are	un osennoseope	levels	voltage levels	of a digital	
	1.9 Explain timing	digital in nature				waveform	
	diagrams and State						

	their purpose in digital electronics of 1.9 1.10 Distinguish between serial and parallel data transfer 1.11 State the advantages and disadvantages of each of the methods in 1.10 1.12 Identify the three basic logic operators 1.13 Illustrate the operation of each of the identified operators with suitable diagrams	Draw waveforms to illustrate the timing diagrams Enumerate the basic operator and show modules of each	Textbooks and classroom resources Logic modules for NOT, AND, and NOR operators	Apply voltage levels for HIGH and LOW inputs to the basic operators and obtain information about the behaviours of each of their outputs	Guide students to connect relevant circuits for testing the behaviours of the basic operators with combinational inputs	Instruct the students to distinguish between serial and parallel data transfer and to state the advantages and disadvantages of each of the methods in 1.10. Ask students to explain the 3 basic logic operators
Genera	Objectives 2.0 Appreciate	e the number system	s and their opera	ations		
	 2.1.Explain why the decimal system is a weighted system 2.2.Explain how powers of ten are used in the decimal system 2.3.Determine the 	write the digits in a decimal system and use some examples of decimal numbers to determine their weights	Lecture notes, reference texts and materials.			Direct the students to list some decimal numbers and determine their weights
	weight of each digit in a decimal number 2.4.Define binary number 2.5.Convert binary	write different binary and decimal numbers and convert the binary ones to decimal	Lecture notes and textbooks			

number to decimal	and decimal to			
numbers and vice	binary			
versa				
versa 2.6.Draw tables to illustrate the maximum bits in each of the number systems of binary, octal and hexadecimal 2.7.Carry out addition, subtraction, multiplication and division in each of the number systems 2.8.Define the 1's and 2's complements 2.9.Convert binary numbers to their 1's and 2's complements 2.10. Explain the applications of 1's and 2's complements in a computer system 2.11. Define binary coded decimal	binary implement the conversion from these number system to decimal and vice versa use examples from textbooks to carry out these arithmetic operations Use examples to carry out these	Lecture notes, reference texts and materials.		Ask the students to give examples of each number system and convert them to decimal numbers.
(BCD) 2.12. Express some	conversions			Ask the
decimal numbers in	processes			students to
BCD and vice versa	give examples of			work out
2.13 Identify other codes	1's and 2's			exercises given
that are used in digital	complements and			in this topic
that are used in digital	show student how			

	systems and explain how	to do the	Textbooks and		
	they are applied	conversion	classroom		
			resources		
Gene	eral Objectives 3.0 Appreciat	e Boolean algebra ai	nd its simplificati	on	
Gene	 3.1.Define Boolean algebra 3.2.Apply the basic laws and rules of Boolean algebra to simplify logic expressions 3.3.Simplify logic expressions using De-Morgan's theorems 3.4.Convert logic expressions to sum- of-product and product-of-sum forms 3.5.Define a Karnaugh map to simplify logic expressions of two three and four variables 3.6.Use Karnaugh map to simplify logic expressions of two, three and four variables 	Apply the relevant laws to prove the validity of the Boolean rules Define a Karnaugh map to simplify logic expressions of two three and four variables and use Karnaugh map to simplify logic expressions of two, three and four variables Draw tables of cells to illustrate the application of	Lecture notes, reference texts and materials.	on	Ask students to compose different logic statements and express them in Boolean form Direct the students to define a Karnaugh map to simplify logic expressions of two three and four variables and use Karnaugh map to simplify logic expressions of two, three and four variables
	(unuclos	the two, three and four variable			Instruct the students to
		expressions			give examples

Genera	l Objectives 4.0 Develop co	ombinational circuit	s and operate the	em with logic gates		of logic expressions and simplify them using Karnaugh map
	 4.1 Define logic gate and truth table 4.2 Differentiate logic gates using their symbols and produce corresponding truth 	Explain the operations of the logic gates with illustrative diagrams	Textbooks Logic modules and multism			Direct the students to define logic gate and truth table and draw the different
	 tables to implement them. 4.3 Construct different combinational circuits and obtain their corresponding outputs with combination of 	Explain the construction circuits and show the logical means	Textbooks Logic gates/modules and multism.	Construct logic circuits using logic gates/modules and determine their output	Guide the students in the construction of logic circuits	logic gates using their symbols and produce corresponding truth tables to implement them
	 inputs 4.4 Obtain different logic/Boolean expressions and simplify them using Boolean rules, truth tables and Karnaugh map 	of obtaining their outputs Illustrate with examples the methods used in the simplification	Lecture notes, reference texts and materials.	experimentally		Ask the students to explain what makes a circuit to be combinational
	4.5 Implement the outcomes of the simplified expressions in 4.4 using suitable logic gates	of logic/Boolean expressions				Direct the students to explain minimization

						as applied to logic expressions
General	l Objectives 5.0 Apprehen	d requisite knowledg	ge on flip-flop an	d digital counters		
	5.1 Define a flip-flop5.2 Distinguish a flip- flop from a latch5.3 Identify the operations of the	Draw the symbols for the different types of flip-flops and explain their operations	Lecture notes, reference texts and materials.	Experiment with multism or available digital modules to illustrate the operations of flip-flop	Guide the students towards the construction of flip-flop circuits	Ask students to explain what is the other name for flip-flop
	different types of flip-flops with suitable diagrams 5.4 Define non-stable	Draw the symbols for multivibrators	Logic modules ICs and data book			
	and a stable multivibrators.	and explain their operations				
	5.5 Explain the operations in 5.4 above using suitable diagrams		Textbooks and classroom resurces			
	5.6 Define digital counters					
	5.7 Distinguish between asynchronous and synchronous counters					Direct the students to define digital
	5.8 Describe the operations of different types of synchronous and asynchronous counters	Draw the circuits for the different types of counters and describe their operations	Textbooks Logic modules ICs and data books	Experiment with the designed counter to confirm workability of the method	Guide the students in the design of counters	counters, distinguish between asynchronous and synchronous
	5.9 Explain the methods for designing digital counters	Show how to design a digital counter illustrating	Textbook Digital modules			counters. List and describe the

 5.10 Describe how counters can be cascaded for various applications 5.11 Enumerate the various applications of counters 	with an example and implement the outcome using logic gates	Data book and multism			operations of different types of synchronous and asynchronous counters
General Objectives 6.0 Apply shift	 ft registers for stored	e of data in digit	al circuits		
6.1 Define shift register and storage capacity6.2 Illustrate with a diagram of a flip-flop the mode by which data is stored6.3 Explain how the different types of shift register operate (e.g. SISO, SIPO, PISO, PIPO and Bidirectional types)6.4 Explain the operation of shift register counter6.5 Highlight some of the applications of shift registers	Draw diagrams to explain the operations of shift register Draw a circuit of the counter and describe its operations	Textbooks Logic ICs, Logic module and data book Lecture notes, reference texts and materials.	Construct the different shift registers and observe their operations	Guide students in the construction of shift registers	Ask the student to draw timing diagrams to describe the operation of each shift register and counter
General Objectives 7.0 Apply sign					
 7.1 Explain quantization and sample-and-hold operation as applied to signal conversion 7.2 Different types of analogue-to-digital and digital-to- 	Draw necessary diagrams to explain terms in 7.1 and describe the operations of converters listed in 7.2	Textbooks Digital ICs and data book	Carry out experiments to show the operation of the converters	Guide the students to construct the required circuits for the operations of the converters	Direct the students to explain why a converter is required in a digital circuit.

analogue converters and describe the operation of each of them 7.3 Define decoder 7.4 Describe the operation of a 4-bit decoder 7.5 Distinguish between a decoder and an encoder 7.6 Highlight some applications of decoders and encoders in digital circuits	Draw the diagram of a 4-bit decoder and describe its operation Explain the function of a decoder and that of an encoder and state some of their applications	Textbooks Digital ICs and data book Textbooks and data book			Direct students to mention some applications of decoders and encoder apart from those earlier listed.
General Objectives 8.0 Apprehend 8.1 Highlight some of	Explain some of	Lecture notes,	cnnology		
the characteristics of digital ICs	these characteristics	reference texts and materials.			
 8.2 Identify the various configurations for the digital ICs in the logic family and explain their pin connections 8.3 State some of the precautions to be taken while using digital ICs 8.4 Mention some areas of applications of the digital ICs 	Show some of these digital ICs to the students and give them for identification Mention some of these precautions and areas of applications	Digital IC data Book and some test instruments	Identify some of the available digital ICs and state their pin connections	Guide students in the identification of these digital ICs	Ask students to distinguish a digital IC from an analogue device

COURSE TITLE: Applied Solar Energy	Code: PYE 416	Contact Hours: 4 Hours/week
Credit Unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 2	Semester: First	Practical: 2 Hours/week

Course main Goal: this course is designed to introduce students to the fundamentals of solar energy conversion systems, available solar energy and local and national needs, photovoltaic and solar thermal engineering applications, and emerging technologies.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Appreciate the conversion of solar radiation to energy
- 2.0 Use measurement of geometry in calculations of solar radiation
- 3.0 Appreciate solar thermal and electrical energy conversions
- 4.0 Use control and drives for solar systems
- 5.0 Recognize the various solar collectors, performance and applications
- 6.0 Analyze the design and performance of solar photovoltaic systems
- 7.0 Appreciate the concept of design of solar energy system

Course Title: Applied Solar Energy			Code: PYE 416		Credit Units: 2 Units		
Course specifications: Theoretical contents			Practical Code: PYE 418		Contact Hours: 2 Hours/Week		
General Objective: 1.0 Appreciate the conversion of solar radiation to energy							
Week	Specific Learning Outcomes	Teacher's Activities	Resources	Specific Learning Outcomes	Teacher's Activities	Evaluation	
	 1.1 Explain the world energy resources – Nigerian energy scenario. 1.2 Explain the 	Explain basic laws of radiation Lecture to explain	Lecture notes, reference texts and materials.			Ask students to explain renewable energy resources and their	

radiation. spectrum 1.7 Explain the physics of the sun: energy balance of the earth. 1.8 Explain energy flux, 1.9 Explain solar constant for earth. 1.10 Explain greenhouse	omagnetic
effect. General Objectives 2.0 Use measurement of geometry in calculations of solar radiation	
	the students
\mathbf{r}	lain solar
2.2 Explain terrestrial and earth surface. multimeter, 1 different determine the radiati	on on the surface.
2.3 Explain solar insolation. Explain terrestrial thermometer, on solar	
2.4 Describe spectral energy and extraterrestrial Luxmeter	
distribution of solar radiation and its	
radiation. characteristics.	
2.5 Explain depletion of solar	. 1
radiation [i] absorption,10 Solar cells, 1Ask th[ii] scattering.resistor 22 Ω, 2Determine theInstruct the	e student to

2.6 Explain beam radiation,		multimeter, 1	effect of	students to	between terrestrial
diffuse and global	Explain the	bulb, 4 LED	different angle	determine the	and extraterrestrial
radiation.	instrument used for	lights, 1 rule, 1	on the power	effect of different	radiation and its
2.7 Explain the measurement	the measurement of	thermometer,	of a solar cell	angle on the	characteristics.
of solar radiation [i]	solar radiation	Luxmeter		power of a solar	
pyranometer, [ii]	pyranometer,			cell	
pyrheliometer, and [iii]	pyrheliometer, and				
sunshine recorder.	sunshine recorder.				
2.8 Explain [i] solar time -					
local apparent time	Explain the				Give
(LAT) and [ii] equation	derivation of angle	10 Solar cells, 1			assignment to
of time (E).	of	resistor 22 Ω , 2			explain the
2.9 Explain solar radiation	[i] incidence,	multimeter, 1	Determination	Direct the	instruments used
geometry [i] Earth-Sun	[ii] surface facing	bulb, 4 LED	of the effect of	students to	for the
angles and [ii] solar	due south,	lights, 1 rule, 1	light source	determine the	measurement of
angles.	[iii] horizontal,	thermometer,	with different	effect of light	solar radiation
2.10 Explain the calculation of	inclined surface and	Luxmeter	wavelength	source with	pyranometer,
angle of [i] incidence, [ii]	[iv] vertical surface.			different	pyrheliometer, and sunshine recorder.
surface facing due south, [iii] horizontal, inclined				wavelength	sunsnine recorder.
surface and [iv] vertical	Explain solar				Ask the students to
surface.	radiation geometry				explain the
2.11 Explain [i] solar day	radiation geometry				derivation of angle
length [ii] Sun path	Explain the				of
diagram and [iii] shadow	Estimation of				[i] incidence,
determination. Estimation	sunshine hours at				[ii] surface facing
of sunshine hours at	different places in				due south,
different places in	Nigeria.				[iii] horizontal,
Nigeria.		Lecture notes,			inclined surface
2.12 Calculation of total solar		reference texts			and [iv] vertical
radiation on horizontal		and materials.			surface.
and tilted surfaces.					
2.13 Prediction of solar					
radiation availability.					Ask students to

					explain solar radiation geometry and estimate sunshine hours at different places in Nigeria
General Objectives 3.0 Appreciate sola	r thermal and electric		1	-	
 3.1 Explain thermodynamic cycles [i] Carnot [ii] Organic, [iii] reheat, [iv] regeneration and [v] supercritical Rankine cycles [vi] Brayton cycle [vii] Stirling cycle [viii] Binary cycles [ix] Combined cycles. 3.2 Explain solar thermal power plants: parabolic trough system. 3.3 Explain [i] hybrid solargas power plants, [ii] solar pond based electric-power plant, [iii] central tower receiver power plant. 3.4 Explain solar photovoltaic energy and its conversion principles - Physics and operation of solar cells. 3.5 Explain classification of solar cells. 3.6 Describe Solar cell energy conversion efficiency, [i] I-V characteristics, effect of variation of solar 	 Explain thermodynamic cycles Explain the following solar plant: solar thermal power plants, hybrid solar- gas power plants, solar pond based electric-power plant, and central tower receiver power plant Explain solar photovoltaic energy and its conversion principles. Explain the classification of solar PV systems. 	Tamiya solar panel - single solar cell with stand, small screw driver, 2 alligator clips, large protractor, colored filters – red, blue, green, and yellow, voltmeter, 100 led light string, ruler, cardboard, LED apparatus.	Determine the effects of light intensity, wavelength, shading, and angle of incidence on the efficiency of a solar cell.	Direct the students to determine the effects of light intensity, wavelength, shading, and angle of incidence on the efficiency of a solar cell.	Direct students to explain solar photovoltaic energy and its conversion principles Ask students to explain solar photovoltaic energy, its conversion

3.14	4Explain solar PV power plants.	classification of solar PV systems.				Give assignment on classification of solar PV systems
General Ob	jectives 4.0 Use control and	drives for solar system	ns			
4.1 4.2 4.3 4.4 4.5 4.6	jectives 4.0 Use control and Explain the basic concepts of process control, discontinuous and continuous mode operation. Explain introduction to proportional, integral and derivative control. Explain controller design, characteristics and feedback compensation. Describe response of controllers. Explain Pneumatic and electronic realization of controllers. Explain Selection of controllers, need for process controller, controller tuning and evaluation criteria. Explain P/I and I/P converters.	drives for solar systemExplain the basicconcepts of processcontrol,discontinuous andcontinuous modeoperation.Explain embeddedsystems andresponse ofcontrollers.Explain Pneumaticand electronicrealization ofcontrollers,Selection ofcontrollers and theneed for processcontroller, controllertuning andevaluation criteria.	ETAP Solar Field Design Software, Field Evaluation Sheet - Sample plot of land that includes the following: - GPS coordinates indicating the location of the field - A scale to measure the area of the field - Size of solar panels to be used and their optimum power production - Slope of land	Design of a solar field	Direct the students to design a solar field	Direct students to explain the basic concepts of process control, discontinuous and continuous mode operation. Ask students to explain P/I and I/P converters and embedded systems [i] design cycle and [ii] 8051
4.8	Explain embedded systems [i] design cycle and [ii] 8051 microcontroller	Explain P/I and I/P converters and embedded systems [i] design cycle and				microcontroller requirement, challenges, trends and issues

	requirement, challenges,	[ii] 8051			
	trends and issues.	microcontroller			
	4.9 Explain the use of	requirement,			
	emulator and in-circuit	challenges, trends			
	emulator.	and issues.	Lecture notes,		
	4.10 State the applications of	allu issues.	reference texts		Ask the student to
	embedded system in		and materials.		explain basic and
	control system and		and materials.		advanced control
	automation, handheld				of solar plants-
	computer, IVR system and	Explain the model			basic control
	GPS receivers.	based predictive			algorithms,
	4.11 Explain basic and	control strategies,			adaptive and
	advanced control of solar	frequency domain			optimal controls.
	plants- basic control	control and robust			optimal controls.
	algorithms, adaptive and	optimal control.			
	optimal controls.	optillar control.			
	4.12 Describe the model based				
	predictive control				
	strategies, frequency				
	domain control and robust				
	optimal control.				
				.	
General	Objectives 5.0 Recognize the va	,	*	applications	
	5.1 Explain the fundamentals	Lecture on the	Lecture notes,		Direct the students
	of solar collectors as	fundamentals of	reference texts		to explain the
	devices to convert solar	solar collectors as	and materials.		fundamentals of
	energy to heat.	devices to convert			solar collectors as
	5.2 Describe non-	solar energy to heat.			devices to convert
	concentrating low				solar energy to
	temperature flat-plate and	Explain the process			heat and the
	evacuated tube collectors.	of concentration of			process of
	5.3 Explain optimal collector	collectors for middle			concentration of
	tilt and orientation.	and high			collectors for
	5.4 Explain [i] collector	temperature			middle and high

performance [ii] useful energy gain, [iii] energy losses, and [iv] efficiency. 5.5 Explain the use of selective coatings to enhance the collector	applications. Explain Line- focusing and point- focusing concentrators:				temperature applications.
efficiency. 5.6 Describe how to concentrate collectors for middle and high temperature applications.	parabolic trough, parabolic dish, heliostat field with central receiver, Fresnel lenses,	Solar cell, variable resistor, digital	Explore solar cells as	Direct the student to explore solar	Ask the students to explain Line-
 5.7 Explain Line-focusing and point-focusing concentrators: parabolic trough, parabolic dish, heliostat field with central receiver, Fresnel lenses, compound parabolic concentrator, and sun tracking mechanisms. 5.8 Explain concentrating collector performance - concentration ratio, useful 	compound parabolic concentrator. Sun tracking mechanisms and solar collector design, testing, installation and operation. State the application of non-concentrating Solar collector.	multimeter (DMM), electric motor desk lamp, protractor, Vernier caliper	renewable energy sources and test their efficiency in converting solar radiation to electrical power.	cells as renewable energy sources and test their efficiency in converting solar radiation to electrical power.	focusing and point-focusing concentrators: parabolic trough, parabolic dish, heliostat field with central receiver, Fresnel lenses, compound parabolic concentrator and sun tracking
energy gain, energy losses, efficiency.5.9 Describe solar collector design, testing, installation	Explain solar collector design,	Lecture notes, reference texts			mechanism.
and operation. 5.10 State the application of non-concentrating collectors in low temperature solar thermal plants for space heating and cooling, drying,	testing, installation and operation and state the application of non-concentrating collectors in low temperature solar thermal plants for	and materials.			Ask the students to explain solar collector design, testing, installation and operation and state the

5.11 Explain the concentrati for process production generation	e use of cooling, coo	ion.			application of non- concentrating collectors in low temperature solar thermal plants for space heating and cooling, drying, seawater desalination.
	Analyze the design and pe	_		1	
 6.1 Explain ph effect - print solar energy into electric cell. 6.2 Explain Se properties, basic equat 6.3 Describe se V character module, m point, cell of factor, effe and temper 6.4 Describe co cells - proto of single co cells, multi silicon cell silicon, cac copper ind diselenide 	otovoltaicLecture bnciple of directexplaininnciple of directexplaininnciple of directexplaininnciple of directphotovolprinciplesolar enemiconductorconversionenergy levels,electricitytions.cell andblar cell, p-n I-semicondristics of a PVpropertieaximum powerlevels, baefficiency, fillequationsct of irradiationExplain tcharacterPV modunommercial solarcharacterluction processPV modurystallinesiliconmium telluride,factor, efficiencyium galliumirradiatiocells, dye-temperati	by Solar cell, incandescer taic effect - amp with per of direct supply, potentiomet optical filte y in a solar multimeters optical bence ductor and clamp, es, energy connecting asic wires s. the fistics of a solar cell, ale, incandescer m power amp with per supply, y, fill potentiomet optical filte supply, y, fill potentiomet optical filte supply, y, fill potentiomet optical filte	Determination of I-V ower Characteristic of a solar cell illuminated by rs, sun, at different ch frequencies Determination of I-V Characteristic of a solar cell illuminated by ower an incandescent ter, lamp, at rs, different s, frequencies	Direct the students to determine the I-V Characteristic of a solar cell illuminated by sun at different frequencies. Direct the students to determine the I-V Characteristic of a solar cell illuminated by an incandescent lamp at different frequencies	Direct the students to explain the classification of PV systems: [i] central power station system, [ii] distributed PV system, [ii] standalone PV system, [iv] grid interactive PV system, [v] small system for consumer applications, [vi] hybrid solar PV system, [vii] concentrator solar photovoltaic.
6.5 Describe th		and clamp, connecting			

6.5	 estimation. State the classification of PV systems: [i] central power station system, [ii] distributed PV system, [ii] distributed PV system, [ii] standalone PV system, [iv] grid interactive PV system, [v] small system for consumer applications, [vi] hybrid solar PV system, [vii] concentrator solar photovoltaic. Explain the PV system components [i] arrays, [ii] inverters, [iii] batteries, [iii] charge controls, [iv] net power meters. Explain PV array installation, operation, costs, reliability. State the applications of PV systems. 	properties, energy levels, basic equations. List out the characteristics of a PV module, maximum power point, cell efficiency, fill factor, effect of irradiation and temperature. List the classification of PV systems: central power station system, distributed PV system, standalone PV system, grid interactive PV system, small system for consumer applications, hybrid solar PV system, and concentrator solar photovoltaic.	Solar battery, 4 cells, with cable and connectors, thermopile, moll type, universal measuring amplifier. rheostat, 330 Ohm , 1.0 A, ceramic lamp socket E27, filament lamp,220V/120 W, hot/cold air blower, 1800 W, meter scale, tripod base PHYWE, barrel base PHYWE, support rod PHYWE, square 250 mm, right angle clamp PHYWE, plate holder,	of the characteristic curves of a solar cell	students to Determine of the characteristic curves of a solar cell	Instruct the students to explain commercial solar cells - production process of single crystalline silicon cells, multi crystalline silicon cells, amorphous silicon, cadmium telluride, copper indium gallium dieseline cells, dye-sensitized etc.
-----	---	---	--	---	--	--

			clamp PHYWE, Glass pane, 150x100x4mm, digital multimeter, lab		
			thermometer,- 10 +100 °C,		
			connecting cord, 32 A, 500		
			mm, red,		
			connecting cord, 32 A, 500		
Cananal Ob	iaatiwaa 7.0 Ammuaiata tha a	anaant of design of go	mm, blue		
	jectives 7.0 Appreciate the c Explain the design of solar	concept of design of sol Illustrate the design	ar energy system Lecture notes		Ask students to
7.2	Explain the design of solar thermal systems for water, space heating, cooling and power generation. Explain f-Chart calculation method for sizing solar water and space heating systems. Explain the design of non- focusing and focusing collectors. Explain the Design aspects of solar thermal energy storage systems.	of solar thermal systems for water, space heating, cooling and power generation. Explain the design of non-focusing and focusing collectors.	and reference texts.		Ask students to explain with relevant examples the design of solar thermal systems for water, space heating, cooling and power generation.
7.5	Explain the selection criteria of storage materials for [i] heating and [ii] cooling applications, [iii] selection of heat transfer fluid for	Explain the design aspects of solar thermal energy storage systems and the selection criteria of storage materials			

7.6 7.7 7.8 7.9 7.10	heating and cooling applications. Explain the design of photovoltaic off-grid and grid- connected power systems. Explain the design of system components - PV modules, batteries, charge controllers, inverters, and auxiliaries. Describe the performance analysis of a photovoltaic system. Explain the use of software codes for design of solar thermal and photovoltaic systems. Explain the performance analysis of various solar thermal systems, [i] PV	for [i] heating and [ii] cooling applications, [iii] selection of heat transfer fluid for heating and cooling applications. Explain the design of LHTES for solar process	Lecture notes, reference texts and materials.		Ask the students to explain the design of system components - PV modules, batteries, charge controllers, inverters, and auxiliaries.
7.10	of solar thermal and photovoltaic systems. Explain the performance				
					Ask the students to explain the use of software tools for
	selection of components and materials, [iii] estimation of economics.				design of solar thermal and photovoltaic
	Explain the use of software tools for design of solar thermal and photovoltaic systems.				systems.

COURSE TITLE: Acoustics	Code: PYE 417	Contact Hour: 1 Hours/week
Credit unit: 1 Units	Pre-requisite:	Theoretical: 1 Hours/week
Year: 2	Semester: First	Practical: 0 Hours/week

Course main Goal: This course is designed to introduce students to an in-depth understanding of the science of acoustic wave propagation, give practical engineering applications and understanding of how noise is quantified, how it is produced, how to mathematically express acoustic wave propagation, etc.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Appreciate the fundamentals of acoustics and sound principles
- 2.0 Appreciate the acoustic principles in speech and hearing
- 3.0 Appreciate vibration and vibration control
- 4.0 Recognize acoustics analogies and transduction
- 5.0 Appreciate sound reproduction
- 6.0 Appreciate indoor (architectural) and outdoor acoustics
- 7.0 Recognize sound absorbers and sound insulations
- 8.0 Appreciate underwater acoustics

COURSE TITLE: Acoustics		Code: PYE 417		Credit Units: 1 Units		
Course specifications: Theoretical contents			Practical Code: None Contact Hours: 1 H		1 Hours/Week	
General	Objective 1.0 Appreciate the fu	ndamentals of acous	tics and sound pr	inciples		
Week	Specific Learning Outcomes	Teacher's	Resources	Specific Learning	Teacher's	Evaluation
Activities				Outcomes	Activities	

I	1.1 Outline the origin of	Lecture	Lecture notes,		Ask students to
	sound energy as vibrating		reference texts		explain sound
	object.	Explain the	and materials.		waves and its
		1	and materials.		mode of
	1.2 Explain the propagation	concept of sound			
	of sound through a media	as a result of			applications.
	1.3 Explain the following	vibrating object.			
	terms in relation to sound	D' 1 1			Direct the
	wave propagation (i)	Discuss how sound			students to
	pitch (ii) timbre (iii)	travels in various			relation sound
	quality.	media.			wave
	1.4 Derive the sound energy				propagation to
	equation.	Write out the			pitch, timbre,
	1.5 Define (i) sound intensity	derived sound			and quality.
	(ii) bel (iii) decibel.	energy equation.			
	1.6 State the relationship				
	between intensity and	Relate intensity			
	amplitude.	and amplitude of			Ask students to
	1.7 Explain the following	sound.			solve problems
	properties of sound: (i)				involving
	interference (ii)	Discuss these			refraction,
	diffraction (iii) reflection	terms: refraction,			reflection,
	(iv) refraction.	reflection,			diffraction, and
	1.8 Explain Doppler's	diffraction, and			interference.
	effects.	interference.			
	1.9 Differentiate between				
	standing wave and	Explain standing			
	traveling wave.	and traveling			
	1.10 Define resonance.	waves.			
	1.11 Describe the concept of	Describe resonance			
	vibrating air-column in	and its effects.			
	an enclosure.				
	1.12 Prove that fundamental	Show			
	frequency of an air-	mathematically the			
	column increases with	relationship			
		r	I		

	temperature.	between air- column and temperature			
	ojectives 2 .0 Appreciate the a		-	ing	
2.2	 Explain the mechanism of hearing Explain the characteristics of hearing [i]threshold, [ii] sensitivity, [iii] loudness, [iv] pitch, masking, [v] and frequency weighting. Explain articulation index. Explain speech- interference level. 	Lecture Explain the concept and principles of speech and hearing.	Lecture notes, reference texts and materials.		Ask the students to explain the mechanism of hearing and to outline the characteristics of hearing.
General Ob	ojectives 3.0 Appreciate vibra	tion and vibration c	ontrol.		
3. 3. 3.	 1 Explain vibration system modeling. 2 Explain energy of vibration. 3 Explain [i] damped oscillation, and [ii] forced oscillation 4 Explain vibration control. 5 Explain damping and damping ratio, 	Lecture Explain the concept of vibration system, energy of vibration, types of oscillation and vibration control. Solve numerical examples and give	Lecture notes, reference texts and materials.		Direct the students to explain damped and forced oscillation. Ask the students to explain

3.6 Describe vibration measurement (accelerometer).3.7 Explain vibration (transverse and longitudinal) in [i] strings, [ii] pipes, [ii] ducts, [iii] bars, [iv] membranes and [v] plates.General Objectives 4.0 Recognize acoust	assignments.	nsduction		transverse and longitudinal vibration in strings, pipes, ducts, bars, membranes and plates.
4.1 Explain electro-mechanical	Lecture	Lecture notes,		Ask the
analogies, and electro-		reference texts		students to
acoustic analogies.	Evaluate electro-	and materials.		differentiate
4.2 Explain reciprocal and	mechanical			between
anti-reciprocal transducers.	analogies for various transducers			electro- mechanical
4.3 Explain transmitter and	and give			analogies, and
loudspeakers (reciprocal	assignments.			electro-acoustic
source and anti-reciprocal source, types of				analogies.
loudspeakers, loudspeaker	F 1-ii		T	Direct the
cabinets, woofers,	Explain receivers or microphones			students to
subwoofers and tweeters).	(reciprocal receiver			explain
4.4 Explain receivers or	and anti-reciprocal			reciprocal and
microphones (reciprocal	receiver,			anti-reciprocal
receiver and anti-reciprocal	microphone		t	ransducers.
receiver, microphone	directivity and sensitivity, types of			
directivity and sensitivity,	microphones,			
types of microphones, calibration of receivers).	calibration of			
canoration of receivers).	receivers).			

General Objectives 5.0 Appreciate sound	d reproduction			
5.1 Trace the historical	Lecture	Lecture notes,		
overview of sound		reference texts		
production.	Explain the	and materials.		
5.2 Explain magnetic	different forms of			
recording.	sound reproduction			
5.3 Explain digital recording	and their prospects.			
5.4 Explain the concept of				
voice recognition.				
5.5Explain playback audio				
equipment.				
5.6 Explain portable audio				
playback equipment (e.g.				
MP3, MP4).				
5.7Describe future of sound				
reproduction.				
1				
General Objectives 6.0 Recognize indoor	r (architectural) and		S	
6.1 Explain sound	_	Lecture notes,		Direct the
production in enclosures	Lecture	reference texts		students to
6.2 Explain growth and	F 1 · 1	and materials.		explain how
decay of sound field in a	Explain sound			sound is
room.	production in			produced
6.3 Explain reverberation	outdoors and indoors.			outdoors and indoors.
time (Sarbine's formula)	indoors.			indoors.
and state reverberation				
effect.				Explain growth
6.4 State the factors				and decay of
affecting [i]				sound field in a
reverberation, [ii]				room.
absorption.				
6.5 Explain [i] reflection of				

6.6 E re (0 6.7 E da 6.8 D im ro au 6.9 E ac im [i lo m	ound, [ii] absorption oefficient, explain direct and everberant sound field critical distance, room onstant and room oefficients). Explain acoustic energy ensity and directivity. Describe acoustic factors in architectural design [i] bom [ii] hall and [iii] uditoriums. Explain outdoor coustical gain and the influence of directional] microphones [ii] budspeakers on system maximum gain. Explain band shells and	Explain direct and reverberant sound field, acoustic energy density and directivity. Explain acoustic factors to be considered in architectural design of a room, hall and an auditorium.	-do-		Solve examples related to reflection, refraction and absorption of sound waves
0	utdoors auditoriums.				
General Objecti	ives 7.0 Appreciate sound	d absorbers and sour	nd insulators	·	
7.1 D	Differentiate types of ound absorbers.	Lecture with	Lecture notes, reference texts		Ask the students to
tr	xplain sound ransmission loss and	examples	and materials.		outline the effect of
7.3 E	ansmission coefficients. xplain [i] mass control ase [ii] field incidence nass law.	Explain the different types of sound absorbers.			frequencies on sound transmission through panels,
	State the effect of				coincidence effect, and

$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	equencies on sound ansmission through [i] anels [ii] coincidence fect [iii] critical equency. escribe [i] single leaf onstruction [ii] double af construction (or puble-panel partition), escribe flanking ansmission. xplain noise insulation atings and insulation quirements), xplain noise reduction a wall. xplain sound pressure vel at various distances om walls, enclosures. escribe acoustic arriers	Explain noise insulation (ratings and insulation requirements), and noise reduction of a wall. Explain sound transmission and insulators	-do-		critical frequency. Direct the students to explain noise insulation with regards to ratings and insulation requirements.
	ves 8.0 Appreciate under			1	
8.2 Ex vel 8.3 De los 8.4 Ex	plain absorption and	Lecture Explain the concepts of underwater acoustics.	Lecture notes, reference texts and materials.		Explain sonar transducer, their properties, and state sonar equation.
	fraction, splain mixed layer in				Direct the students to

channel and reliable acoustic path,	Explain deep sound channel and reliable acoustic path.	-do-		explain transmission loss model for normal mode propagation.
 8.8 Explain sonar transducer, their properties, and state sonar equation. 8.9 Describe noise and echo, 	Explain the difference between noise and echo.			Give students assignment to distinguish between noise and echo.
propagation.				

HND II SEMESTER 2

PROGRAMME: HIGHER NATIONAL DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

COURSE TITLE: Control Systems	Code: PYE 421	Credit Hour: 3 Hours
Course unit: 2 Units	Pre-requisite:	Theoretical: 1 hours/week
Year: 2	Semester: Second	Practical: 1 hours/week

Course Main Goal: This course is designed to introduce the students to the fundamentals of systems theory with emphasis on control system design and analysis to provides foundational tools that will enable the student understands and engineer control systems in a variety of application domains including robotics, embedded systems, power systems, electrical and electronics circuits.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Appreciate the basic concept of control systems
- 2.0 Develop mathematical models of physical systems
- 3.0 Apply feedback in control systems
- 4.0 Apply stability concepts in control systems
- 5.0 Analyze time and frequency responses of control systems
- 6.0 Apprehend basic knowledge on automatic control systems

Course Title: Control Systems			Code: PYE 421	ode: PYE 421		Credit Units: 2 Units	
Course specifications: Theoretical contents			Practical Code: PYE 424		Contact Hours: 2 Hours/Week		
General Objective 1.0 Appreciate the basic concept of control systems							
Week	Specific Learning	Teacher's Activities	Resources	Specific	Teacher's	Evaluation	
	Outcomes			Learning	Activities		
				Outcomes			
	1.1 Define system and	Write and explain the	Lecture notes,			Ask students to	
	control system	two classes of control	reference texts			identify the	
	1.2 Give the two broad	system	and materials.			various control	
(1.3 H 1.4 H 0 1.4 H 1.5 H 1.5 H 1.6 H 2 0 0 0 0 0 0 0 0 0 0 0 0 0	classes of control system (Open and Closed) Explain each of them using suitable block diagrams Illustrate the operation of control systems under the two broad classes given in 1.1 Explain some of the terms that are used in control systems Identify some of the areas of application of control system in our domestic life	Mention some known examples and describe how they operate Mention some domestic applications of control systems	Domestic items	Identification of the control mechanisms in some selected domestic items	Guide the students towards the identification of the control system mechanisms	system mechanism	
--	--	--	--	--	--	--	
2.1 I 1 2.1 I 1 2.2 I 1 2.2 I 1 2.3 I 1 1 2.3 I 1 1 1 2.4 I 1 1 2.4 I 1 1 1 1 1 1 1 1 1 1 1 1 1	Define mathematical model of a control system Describe the different methods by which a control system model can be analyzed Highlight some of the physical systems such as mechanical, electrical, pneumatic, hydraulic, thermal etc. that can be modeled for analysis for control systems Identify the elements of each of the physical	Mention examples of methods used such as block diagram, mathematical equations, signal flow, graph, etc. in analyzing models in control systems Explain how systems are modeled in different forms with the aid of requisite diagrams	Lecture notes, reference texts and materials. Lecture notes, reference texts and materials.			Direct the student to write the mason's gain formula and identify its components.	

systems highlighted in 2.3. 2.5 Define transfer function 2.6 Use requisite methods from those listed in 2.2 analyze transfer function of some examples of systems modeled as mechanical, electrical, thermal etc. 2.7 Give practical examples of some of the models highlighted in 2.3.	analyzed and apply the relevant methods for the analysis of its transfer function		Ask the students to explain models as used in control system.
General Objectives 3.0: Apply feed	oack in control systems		
 3.1 Define feedback system 3.2 State the characteristics of feedback in a control system 3.3 Enumerate some of the effects of feedback in a control system 3.4 Explain regenerative feedback 3.5 Give examples of some devices that are used as feedback mechanisms in systems 	 Mention some of these characteristics and explain them Highlight some of these effects which are reduction of parameter variation control of system dynamics, control of disturbance, linearization of system, etc and how they are achieved with relevant diagrams Draw a diagram to illustrate the regenerative feedback 	Lecture notes, reference texts and materials. -do-	Direct students to state and explain the characteristics of feedback in a control system Instruct the students to enumerate some of the effects of feedback in a control system and give examples of some devices that are used as feedback mechanisms in systems

	Mention examples of these devices such as tachometer		
General Objectives 4.0 Apply stability	concepts in control syste	ms	
systems 4.2 Mention some of the conditions for stability in a system 4.3 Name the methods used to evaluate system stability and explain how they are applied 4.4 Write the characteristics	Explain the conditions for stability of systems Give examples of some stability methods such as Routh-Hurwitz, Nyquist criterion, Root- Locus, Liapunov etc. Work out the stability	Lecture notes, reference texts and materials.	Ask students to explain stability in control and outline the conditions for stability of systems Direct the
 control systems and evaluate their stability using the methods named in 4.3. 4.5 Enumerate the concepts of controllability 	of systems with certain given characteristics equations Explain the concepts and state how they		students to mention some of the components that are used to attain stability in systems
system	occur in systems		Ask the student to explain the maximum value for a stable system

General Objectives 5.0 Analyze time an	nd frequency responses o	f control systems	5		
5.1 Explain the significance	Enumerate the	Lecture notes,	Construct some	Guide the	Direct the student
of analyzing a control system in the time domain 5.2 Distinguish between transient and steady-state response of a system 5.3 Identify the standard test	importance of evaluating the time response of a system. Give the meaning of each of the two terms List some of the test signals such as step,	reference texts and materials.	basic circuits and analyze their time response	students towards the construction and analysis Show the students the	to give the equation for the time response of a system and identify its components
signals that are used for analysis of time response 5.4 Determine the time response for first and second order systems by applying each of the types of test signals	ramp and parabolic Draw some examples of first and second order system and analyze them	Textbooks and test instruments	Apply these test signals to circuits constructed under 5.1 and analyze their time response	modes of applying the test signals and obtaining the time responses	Direct the students to identify the test instruments that can be used for analyzing the time response of
5.5 Describe how a frequency response of a system can be obtained 5.6 Use the equation of a unity feedback system having input $r(t) =$ $\times Sin \omega t$ to show from the output that frequency response is independent of amplitude and phase of the input signal	Explain the procedure for determining the frequency response of a system Write the equation for input of a unity feedback input and obtain its output.		Build some first and second order systems and analyze their time response	Provide circuits that can be constructed for analysis	systems
 5.7 Explain the significance of determining the bandwidth of a system. 5.8 Explain the Nyquist and Bode plots and how they 	Show a typical graph of a frequency response curve and show the students how to obtain the bandwidth of a	Textbooks and test instrument		Provide the procedure and guide the students to	Ask the student to explain the correlation between

are obta		system from it Give examples of equations of systems and derive the various value for plotting both		Construct circuits for a first and second order systems and determine their frequency responses	construct and determine the frequency responses of the circuits	frequency responses and time response Direct the students to describe the graph used for bode plot structured
General Objectives	6.0 Apprehend bas	ic knowledge on automat	tic control system	ns and digital com	puter	
 applied 6.2 Enume industri 6.3 Use exa process to illust process 6.4 Explain the con of an id process 6.5 Describ types o systems 6.6 Explain an auto system 6.7 Identify 	the functions of ponents/elements leal industrial control system be the various f process control f the behavior of matic control v the two basis for ving automatic	Give some of the examples of industrial process and explain how they result in production of items Draw a block diagram of an ideal process control system and explain the functions of each of the elements/components List the various types of process control systems and mention some of their examples to describe their modes of functioning Draw the block diagram	Textbooks and samples of products in the market Textbooks and samples of elements used in industrial processes	Identify the processes involved in the production of some selected items Identification of some elements used in process control and state their areas of application	Guide the students in the selection and identification of the processes involved in their production Get some available items that can be used in process control system and guide students on their areas of	Instruct the students to explain the variables that influence the performance of an industrial process Direct the students to mention some industries and identify some of their processes Ask the students to mention some of the benefits of a process control
6.8 Descrit	ler be the types of lers under each of	Draw the block diagram of an automatic control system and explain how			their areas of application	a process control system

controller. 6.9 Identify th	e four levels of ntrol system List the the class automa and the accordin control the acture	two basis for sification of tic controllers se are: [i] ng to their actions [ii] upon tating medium.	Textbooks and		
	automa and the	se are: [i]			
	control	actions [ii] upon			
			Textbooks and		
	Mentior	n and draw the	controller		Direct the
		iagram of all the	modules		students to
		each class and			distinguish
		them e.g. P, PI,			between the
	PID etc	•			various types of automatic
		e the four levels form of a triangle			controllers and explain the
		cuss each of			benefits of
	them				implementing a
					process control
					system.

PROGRAMME: HIGHER NATIONAL DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Microelectronic Systems	Code: PYE 422	Contact Hours: 4 Hours/week
Credit unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 2	Semester: Second	Practical: 2 Hours/week

Course main Goal: This course is designed to provide students with an understanding of the structure, functionalism, and concept of micro processing system.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Outline the function of a CPU and its relation with other components of a Microprocessor System with respect to the address, data and control buses.
- 2.0 Appreciate the use of address selection and enabling signals within a microprocessor system
- 3.0 Recognize the fetch executive sequence.
- 4.0 Identify the main classes of instruction within the instruction set of a microprocessor and understands their operations.
- 5.0 Trace the dynamic execution of a simple machine code programme
- 6.0 Outline the organization of the stack and its uses by sub routines
- 7.0 Apply the principles of interrupts
- 8.0 Appreciate classification, packaging of, and technologies used in integrated circuits in microprocessor-based system.
- 9.0 Appreciate classification and packaging of technologies used in integrated circuits in microprocessor
- 10.0 Outline bus board design system layout, bus loading and distributions relate to signal degradation.
- 11.0 Solve practically the problem of signal degradation

PROGRAMME: HIGHER NATIONAL DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS)

Course Title: Microelectronic Systems	Code: PYE 422	Credit Units: 2 Units				
Course specifications: Theoretical contents	Practical Code: PYE 424	Contact Hours: 2 Hours/Week				
General Objective 1.0 Outline the function of a CPU and its relation with other components of a Microprocessor System with respect to						

the add	the address, data and control buses.									
Week	Specific Learning	Teacher's	Resources	Specific Learning	Teacher's	Evaluation				
	Outcomes	Activities		Outcomes	Activities					
	 1.1 Draw a microprocessor containing instruction register (IR) Programmed counter (PC) store address register, accumulator, arithmetic and logic unit (ALU), Status register, control and timing devices and explain the purpose of each. 1.2 Draw a block diagram of a typical microprocessor system including a microprocessor memory (RAM and ROM), input/output, address bus, data bus, and control bus. 1.3 Explain the purpose of each component in 1.2 and the need for both RAM and ROM in a system. 1.4 Draw a typical memory map for a small system. 	Lecture with examples Explain the internal structure of a microprocessor. Explain the function of each unit of a microprocessor system. State the application of microprocessor in practical systems. Solve problems on microprocessor system.	 8-Bits Microcontroller/ Microprocessor Kits (Arduino Kit is handy). Various sensor types, actuators and modules Breadboard Expansion Board, Power Supply (5V/3.3V) are the under listed. #1 LCD1602 Module visual output device #2 Power Supply Module #3 Servo Motor actuator #4 Stepper Motor actuator #5 Ultrasonic Sensor proximity sensor #6 Temperature and Humidity sensor Module #7 IR Receiver 	Show students practically using projector how to setup IDEs for 8bits, 16bits and 32 bits' architecture. Introduce students to most common Assembler and Compiler; Editor for 8bits/16bits/32bits architecture microprocessor readily available in Nigeria markets (AVR/PIC/STM and 8051/52). Example of the features of the IDE developed in 1.1. Introduce students to the use of Multisim and/or Proteus Simulation Packages.	Explain the architecture of the microprocessor Familiarize the students with the resources as listed in column 4	Ask students to draw a block diagram of a typical microprocessor system indicating the subunits Explain the purpose of each subunit				

				• .•			
				communication			
				module			
				#8 DuPont and 65			
				Jumper Wire for			
				connection			
				#9 Active and			
				Passive Buzzer			
				audio output			
				device			
				#10			
				Potentiometer			
				sensor (input			
				device)			
				#12 digit 7-			
				segment Display			
				visual output			
				device			
				#13 Multi-			
				coloured LEDs			
				Visual output			
				device			
				#14 Photo-			
				resistor Sensor			
				#15 Thermistor			
				Sensor			
General	Obj	ectives: 2.0 Appreciate	the use of address sel	ection and enabling	signals within a micro	oprocessor system	n
	2.1	Explain the meaning	Discuss the use of	Lecture notes,	Solve examples by	Introduce the	Direct the student to
		of a tri-select/enable	address selection in	reference texts	simulation using	use of the	discuss the use of
		signal for control of	a microprocessor	and materials.	Proteus/Multsim and	software to	address selection in
		the third states.	system and explain		physical realisation	students.	a microprocessor
	2.2	Explain that there is	the importance of		using a typical		system and explain
		no logical conflict on	address bus, control		microprocessor/micr		the importance of
		the address bus since	bus and data bus in		ocontroller		address bus, control
		the microprocessor is	a microprocessor		architecture.		bus and date bus in

	the only talker.	system.				a microprocessor
2	3 Deduce that the			Introduce the student	Develop	system.
	microprocessor,			to	1	5
	RAM, ROM and input			microprocessor/micr		
	devices can all act as			ocontroller port	application for	
	talkers on the			initialisations.	blinking LED	
	common data bus					Direct students to
	without conflict by the			Write and develop		Explain the process
	use of tri-state	Explain the process		application for		of address decoding
	devices.	of address decoding		blinking LEDs, right		and examine
2	4 Explain the process of	and examines		and left shifting data		manufacturer's
	address decoding and	manufacturer's		manipulation.		literature on
	examine	literature on	Lecture notes,	1		commercial clips.
	manufacturer's	commercial clips.	reference texts	Write and develop		Ĩ
	literature on		and materials.	source code for		
	commercial clips.			serial port, parallel		
2	5 Describe how part of			port, SPI, I2C and		Instruct the students
	the control bus (e.g.			one-wire data		to analyse the
	clock, read, write			transfer.		schematic diagrams
	e.t.c) are used to					showing the
	control the data			Interface		interconnection of
	transfers.	Analyze schematic		microcontroller/micr		processing, memory
2	6 Analyze schematic	diagrams showing		oprocessor to		and I/O ports using
	diagrams showing the	the interconnection		assorted		data address,
	interconnection of	of processing,		sensors/modules		read/write-enabling
	processing, memory	memory and I/O		using protocols in		signals and examine
	and I/O ports using	ports using data		2.3.		the relationship
	data address,	address, read/write-				between the signals
	read/write-enabling	enabling signals		Trace signals on		
	signals.	and examine the		communication lines		
2	7 Examine the	relationship		(bus) using CRO.		
	relationship between	between the signals.				
	the signals in 2.6					
	using a CRO or logic					

	analyzer.					
General Ob	jectives 3.0 Recognize th	e fetch executive sequ	uence			
3.1	1	Lecture with	Lecture notes,	Introduce students to	Conduct	Ask the students to
	operation as fetching	examples	reference texts	electronics	practical to	illustrate the execute
	the instruction to the	Explain the fetch	and materials.	components	interface	sequence for simple
	microprocessor,	cycle in a		interfacing to	electronic	jump instruction.
	decoding the	microprocessor.		microprocessor/micr	components to	
	instruction within the	Give examples to		ocontroller.	microprocessor	
	microprocessor,	students to illustrate				
	fetching more data	the fetch execute		Solve problems		Direct the students
	required and	cycle (sequence)		using signal		to solve problems
	executing the	Explain with the aid		conditioning.		using signal
	instruction.	of suitable				conditioning.
3.2		diagrams the		Signal processing:		
	execute sequence for a	synchronization of		Analogue to Digital		
	simple data transfer	bus microprocessor		Conversion (ADC)		
	instruction involving	system		and Digital to		
	the accumulator and			Analogue		
	memory on I/O port.			Conversion (DAC).		
3.3						
	sequence for a simple		-do-	Signal processing:		
	jump instruction.			simple approach		
3.4	Interpret timing			digital signals		
	diagrams to show the			filtering. Voltage		
	relationship between			level conversion for		
	clock pulses and bus			ADC processing. (0		
	signals for the transfer			-5V, -5V- 0 +5V, 0		
	defined in 3.2			– 12V and -15V –0 -		
				+15V).		
	jectives 4.0 Identify the	main classes of instru	ction within the in	struction set of a micro	processor and u	nderstand their
perations.						
4.1	Give examples from	Lecture with		Explain simple and	Conduct	Ask the students to
	main types of	examples.		basic interfacing	practicals to	explain the use of
	instruction groups:	Discuss the types of		techniques and solve	develop	four address modes.

4.2	data transfer instructions memory reference and 1/0, arithmetic and logic instructions test and branch instructions. Explain the use of four addressing modes and differentials between them.	instruction set. Describe the features of the addressing modes in 4.2.	Lecture notes, reference texts and materials.	examples on control relay. Develop applications to control dc and ac loads at various power levels more than 1000W. Introduce concepts of Pulse Width Modulation (PWM) to the students. Solve typical applications of using PWM for; dimmer, DC/AC motor speed controller.	application to control AC and DC loads at various power levels	
	ectives 5.0 Trace the dy			1 0	I	
5.2	Explains that, for any given problem, a set of steps, called an algorithm, must be created which will solve the problem. Define the algorithm (draws the programs) to solve a given sample problem. Define that in order to load and execute a simple program. Some software must already exist within	Lecture with examples Give assignment. Give examples of algorithm. Explain the importance of flow chart in writing programs. Give assignment on trace tables. Illustrate with suitable timing diagram the variation of bus	Lecture notes, reference texts and materials.	Show student PCB development for microprocessor/micr ocontroller application. Introduce students to basic rules in PCB designs for implementation of fast switching microprocessor/micr ocontroller system. Introduce student to	Introduce students to basic rules in PCB designs	Ask students to define the algorithm to solve a given sample problem Introduce students to basic rules in PCB designs for implementation of fast switching microprocessor/micr ocontroller system.

5.5 5.6	the machine. Construct trace tables of the problem in 5.2 Verify the trace table in 5.4 by loading and single. Examine the bus signals under clock control during the execution of programs in 5.2	signals under clock control during the execution of programs.	-do-	signals resistance, inductance and capacitance. Solve PCB examples for applications in 2.4.		
	ectives 6.0 Outline the o	0	v.	sub routines	1	
6.1	Explain the mechanism of the stack as a last in first out (LIFO) store and the function of the stack pointer in this operation. Explain the use of the stack in the storing of the return address from sub routine of a sub routine, saving of MPU resister contents. Show how the stack	Lecture with worked examples Explain the working principles of stack memory. Solve problems involving stack memory.	Lecture notes, reference texts and materials.			Direct the students to explain the mechanism of the microprocessor response upon receipt of an interrupt.
6.4	can be used to pass parameters between the main program and a sub routine. Test sub routine for: timing delay, a defined mathematical					

function, an	input or		
output routin			
General Objectives 7.0 Ou	tline the principles of inte	errupts	
7.1 Deduce w	5	Lecture notes,	Ask the students to
interrupts		reference texts	explain the principle
necessary	principle of	and materials.	of interrupt in data
especially	in the interrupt in data		transfer.
handling o	f data transfer.		
transfer be	tween Explain the		
peripheral	and relationship		
computer.	hetween MPU		
7.2 Explain ho	w an registers, stack	and	
interrupt n	hay cause interrupt.		
the main p	-		
to call an i	1 ~ · · · · · · · · · · · · · · · · · ·		
servicing a	1	neir	
interrupt.	applications.		
7.3 Infer that i			Instruct the student
returning f			to explain the use of the stack in saving
ISR, the m			and restoring MPU
program sl			registers when
continue a	e		servicing an
it had neve			interrupt.
interrupted			
7.4 Explain th			
the stack in	-		
and restori	-	-do-	
registers w			
servicing	an		
interrupt.			
7.5 Explain th mechanism			
mechanish			

· ·	1				
microprocessor					
response upon					
receipt of an					
interrupt.					
7.6 Distinguish					
between maskable					
and non-maskable					
interrupts.					
General Objectives 8.0 Appreciate of	l classification, packagi	ng of, and technolog	gies used in integrated	circuits in micro	processor based
system					-
8.1 Identify, using	Explain	Lecture notes,			Direct the students
manufacturer's	characteristics,	reference texts			to discuss the
literature the	functions and	and materials.			performance of the
characteristics of a	operations of items				16 bit processor
single chip computing	in 8.1 and 8.2 using				
element e.g. 8 bit and	manufacturer's				
16 bit processors and	literature.				
bit slice elements.					
8.2 Describe the use of					
manufacturer's					
literature, its function,					Ask the students to
operations and					explain the use of
distinguishing	Discuss the use of				manufacturer's
characteristics of Static	manufacturer's				literature, its
RAM, dynamic RAM,	literature, its				function, operation
MOS, EPROM,	function, operation	1			and distinguishing
EEROM and parallel	and distinguishing	-do-			characteristics of
output port.	characteristics of				static RAM,
8.3 Investigate practically	static RAM,				dynamic RAM,
the performance of these devices with	dynamic RAM,				MOS, EPROM, EEROM and
reference to	MOS, EPROM, EEROM and				
manufacturer's data					parallel output port.
manufacturer s data	parallel output port.				

	sheets and the system					
General Ob	design. jectives 9.0 Appreciate of	lassification and pac	kaging of technolog	ies used in integrated	ircuits in micro	processor
9.1 9.2 9.3	Write programs involving assignment, selection and iteration. Execute the programs written in 9.1 Write language program to: parallel ports, serial ports involving the use of sub routines and interrupts	Illustrate with examples Guide the students to write, debug and create programs in assembly language.	 8-Bits Microcontroller/ Microprocessor Kits (Arduino Kit is handy). Various sensor types, actuators and modules are: Breadboard Expansion Board, Power Supply (5V/3.3V) are the under listed. #1 LCD1602 Module visual output device #2 Power Supply Module #3 Servo Motor actuator #4 Stepper Motor actuator #5 Ultrasonic Sensor proximity sensor 	Write, debug and create programs in assembly language	Conduct practicals to write, debug and create programs in assembly language	Direct the students to write programs involving assignment, selection and iteration
	1 Relate logic circuit	Explain the sources	Lecture notes,	g and distribution feb	are to signal deg	Ask the students to
10.	diagrams to printed	of digital signal	reference texts			explain the causes

circuit board layout. 10.2 Describe the	printed circuit	and materials.	of digital signal degradation in printed circuit board
inductance, capacitance resistance as with P.C.B' speed digita	and ssociated s on high-		
	Solve practically the problem	n of signal degradation	
11.1 Use buffer e to prevent ri bus lines.11.2 Use decoup networks to cross talk	inging in signal degradation in PCB.		Direct the students to solve problems on signal degradation in PCB.

PROGRAMME: HIGHER NATIONAL DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS) Course Title: Equipment Reliability Code: PVE 423 Contact Hours: 2 Hours

Course Title: Equipment Reliability.	Code: PYE 423	Contact Hours: 2 Hours
Credit Unit: 2 Units	Pre-requisite:	Theoretical: 2 Hours/week
Year: 2	Semester: Second	Practical: 0 Hours/week

Course main Goal: This course is designed to enable students know the basic concepts of reliability engineering and its importance in electronics equipment and systems.

General Objectives:

On the completion of the course, the student should be able to:

- 1.0 Apply the basic concepts of reliability
- 2.0 Recognize failure and failure rate
- 3.0 Appreciate the concept of reliability prediction
- 4.0 Outline the causes of component/equipment failure

- 5.0 Comprehend the concepts of maintainability and maintenance
- 6.0 Comprehend the concepts of specifications and testing methods

	AMME: HIGHER NATION	NAL DIPLOMA IN	SCIENCE I	ABORATOR	Y TECHNOL	OGY (PHYSICS WITH
	RONICS)					• • • •
	Fitle: Equipment Reliability		Code: PYE		Credit Units	
	pecifications: Theoretical con		Practical C	ode: None	Contact Hou	Irs: 2 Hours/Week
-	Objective 1.0 Appreciate the					
Week	Specific Learning	Teacher's Activities	Resources	Specific	Teacher's	Evaluation
	Outcomes			Learning Outcomes	Activities	
	 Explain the basic concept of equipment reliability. Describe the need for reliability tool. State the applications and benefits of reliability tool. Explain the difference between quality and reliability. State the difference between reliability and quality control. Explain life - cycle conditions of products. Explain reliability as a relative measure. Explain probabilistic reliability, Describe repairable and 	Lecture Explain the basic concept of reliability and give assignments State the difference between reliability and quality control and explain life - cycle conditions of products. Explain reliability as a relative measure and explain probabilistic reliability.	Lecture notes, reference texts and reference. -do-			 Short verbal questions on reliability, quality, quality control, reparability and non- reparability. Quiz on reliability, quality, quality control, reparability and non- reparability. Direct the students to explain reliability as a relative measure and explain probabilistic reliability.

General Obje	ectives 2.0 Recognize failu	ire and failure rate		
•	Explain failure, fault		Lecture	Ask students to solve
	and item.		notes,	problems involving
2.2	Classify failures into		reference	failure, failure rate,
	categories.		texts and	mean time between
2.3	Explain failure causes		materials.	failure (MTBF), mean
	and failure effects.	Lecture.		time to failure (MTTF)
2.4	Define failure rate.			and mean time to repair
2.5	Explain [i] mean time			(MTTR). Solve
	between failure	Discuss failure, and		numerical problems with
	(MTBF), [ii] mean time	its relation to basic		these concepts, give
	to failure (MTTF) and	failure and reliability.		assignments, and quiz.
	[iii] mean time to repair	Lecture with worked		
	(MTTR).	examples		
2.6	Derive the			
	mathematical			
	relationship between			
	reliability and failure		-do-	
	rate.			
2.7	Derive the			
	mathematical			
	relationship between			
	MTBF, MTTF and			
	failure rate.			
2.8	Explain the concept of			
	failure pattern (the			
	bathtub curve).			
2.9	Explain mathematical			
	relation of the wear-out			
2.10	failure.			
2.10) Explain measurement			
	of mean wear-out life.			
2.11	Explain confidence			
	limits for normal			

	distribution.			
eral Obj	ectives 3.0 Appreciate the	concept of reliability p	redictions	· · ·
3.1	and improve the reliability of systems.	Lecture: Discuss the concepts	Lecture notes, reference	Ask students to explain fault tree and reliability block diagrams.
3.2	analysis.	of reliability predictions including	texts and materials	
3.3	Explain reliability block diagrams.	probability laws. Lecture with worked		
3.4	Explain the classification of engineering systems	examples		State the rules for combining probabilitie Use these rules to solve
3.5		Derive laws of probability relevant to		problems.
3.6	Derive laws of probability relevant to reliability prediction, [i] multiplication rule, [ii] addition rule and	reliability prediction, multiplication rule, [addition rule and binomial distribution.		
	[iii] binomial distribution.		-do-	
3.7	Derive the relation between reliability and MTBF of a series system	Derive the relation between reliability and MTBF of a series system		Derive laws of probability relevant to reliability prediction.
3.8	Derive the relation for MTBF of a series system.	Derive the relation for MTBF of a series and		Give relevant numerica examples
3.9	5	parallel system and derive a relation for MTBF of a series and parallel system.		

3.11 3.12 3.13 3.14 3.14 3.15 3.16 3.17	MTBF of a parallel system. Drive the relation between reliability of a series - parallel system. Drive MTBF of a series-parallel system. Explain the redundancy techniques in system design. State the classification of redundancy: active redundancy, passive or standby redundancy, and conditional active redundancy. State the limitations of redundancy. Explain the comparison between reliability improvement using active and passive redundancy. Explain redundancy with periodic repair.		Lecture notes and reference texts.	Explain the redundancy techniques in system design. Give the students assignment on the classification of redundancy: active redundancy, passive or standby redundancy, and conditional active redundancy. Lecture with worked examples.
General Objec	tives 4.0 Outline the cau	ises of component/equi	pment failure	
4.2	Explain failure types. Describe the classification of causes of component failure. Explain [i] environmental stresses [ii] operating stresses [iii] voltage surges, [iii]	Lecture Discuss failure types, the cause of component failure. Discuss failure rate and its relation to	Lecture notes and reference texts.	Ask students to explain failure types and the causes of failure in some basic components, equipment or systems. Give assignments on methods of reducing

4.5	current surges and frequency surges. Explain failures in electronic components: capacitors, variable capacitor, resistors, semiconductors, relays, inductors and transformer. Describe the methods of reducing component/equipment failure.	basic failure, weighting factors (rating, environmental, temperature etc.)			component/equipment failure including capacitors, variable capacitor, resistors, semiconductors, relays, inductors and transformers.
	ctives 5.0 Comprehend t	he concepts of maintain	ability and n	naintenance	
5.1 5.2 5.3	Explain engineering maintainability and engineering maintenance. Describe maintainability functions: [i] exponential distribution, [ii] Rayleigh distribution, [iii] Weibull distribution, [iv] normal distribution and [v] lognormal distribution Explain terminologies relating to maintainability: [i]	Lecture Discuss why maintenance is important and relate it to reliability. List out the methods of improving maintainability. Explain maintainability functions: [i] exponential distribution, [ii] Rayleigh distribution, [iii] Weibull distribution, [iv]	Lecture notes and reference texts.		Direct students to explain the difference between maintenance and maintainability. Ask students to derive maintainability functions such as exponential distribution, Rayleigh distribution, Weibull distribution, normal distribution and lognormal distribution.

	[ii] active repair time, [iii] logistics time, [iii] administrative time, [iv] mean time to repair (MTTF), [v] maintenance action (repair) time, [vi] maintenance time constraint, [vii]	and [v] lognormal distribution List out the methods of improving maintainability.	Lecture notes and	Direct the students to briefly explain the terminologies relating to maintainability
	utilization factor [viii] availability [ix]		notes and reference	Instruct the students to
	unavailability and [x]	Explain system	texts.	explain system
	reparability.	availability and		availability and analysis
5.4	1 5	analysis.		explain the
	availability and	F 1		classifications of
5.5	analysis. Explain the	Explain the classifications		availability.
5.5	classifications	availability		
	availability: [i] steady-	Explain availability of		
	state availability, [Ii]	items in series and		
	instantaneous or point	parallel configuration		Ask the students to
	availability and [iii] mission availability.			explain maintenance State and explain the
5.6	5	Explain maintenance.		classification of
	items in series and	State and explain the		maintenance
	parallel configuration.	classification of		
5.7		maintenance.		
5.8	1			
5.9				
	of maintenance: [i]			
	corrective			
	maintenance, [ii]			
	preventive maintenance (routine			Ask the students to
	mannenance (routine			ASK the students to

m	aintenance,		Lecture	explain system
	reventive		notes and	availability,
-	eplacement,		reference	classification and
	lentification of			analysis with numerical
			texts.	5
	ominant failures,			examples.
	lentification of			
	egradation			
	ondition), [iii]			
-	redictive			
	naintenance. [iv]			
	mergency			
	naintenance (Reactive			
	naintenance, run to			
	ail maintenance), [v]			
tir	me-based			
m	aintenance, [vi]			
cc	ondition-based			
m	aintenance, [vii]			
or	perational			
m	naintenance, and			
[v	iii] reliability			
ce	entered maintenance.			
5.10 St	tate the factors to			Direct students to state
cc	onsider in deciding a	State the factors to		the factors to consider in
	naintenance policy:	consider in deciding a		deciding a maintenance
	operational	maintenance policy.		policy.
	equirement [ii]			r - J
	quipment		Lecture	
	haracteristics, [iii]		notes and	
	ools and test		reference	
	quipment, [iv]		texts.	Instruct the students to
	aintenance personnel			explain methods of
	maintenance			improving
-	structions and	Explain methods of		maintainability
	isu ucuons anu	•		mannannaoinny

	5.11	manuals, [vi] spares provisioning [vii] logistics. Explain methods of improving	improving maintainability			
		maintainability				
				-do-		
General	Obje	ectives 6.0 Comprehend t	he concepts of specifica	tions and test	ting methods	
	6.1	Explain standard		Lecture		Ask students to explain
		specification.	Lecture	notes and		standard specification
	6.2	List and explain the	D: (1)	reference		and list the types of
		types of specifications:	Discuss the concepts	texts.		specifications.
		[i] performance specifications, [ii]	of specification and the testing method			
		prescriptive	with examples.			
		specifications [iii]	with examples.			
		proprietary				Direct students to
		specifications and [iv]				explain the typical items
		test specifications.				of information required
	6.3	State the uses of				in specification.
		specification.				-
	6.4	Explain the typical	Describe as an			
		items of information	example any			Instruct the students to
		required in	equipment			explain the relationship
		specification,	specification.			between testing and
	6.5					inspection.
		example an equipment				
	66	specification.	Evenlain with			Direct the students to
	0.0	Explain with examples	Explain with			
		the components specifications.	examples the components			explain with examples the components
	6.7	1	specifications and			specifications and
	0.7	Compare specification	specifications and			specifications and

versus cost of an	compore components	Lecture	compare componente
	compare components		compare components
instrument or	specification versus	notes,	specification versus cost
equipment.	cost of an instrument	reference	of an instrument or
6.8 Explain test methods	or equipment.	texts and	equipment.
and describing the		materials	
various testing			
methods: [i] prototype	Explain test methods		Ask the students to
testing [ii] pre -	and describing the		explain test methods and
production	various testing		describing the various
(qualification) testing,	methods.		testing methods with
[iii] package			relevant examples.
transportation testing,			
[iv] production testing			
and [v] accelerated life			
testing.			
6.9 Explain the relationship			
between testing and			
inspection.			
6.10 Explain sampling plan	Explain sampling		Instruct the student to
and describe the	plan and describe the		explain sampling plan
various types of	various types of	-do-	and describe the various
sampling methods: [i]	sampling methods.		types of sampling
single-sampling plan,			methods.
[ii] double-sampling			
plan [iii] multiple-			
sampling plan, [iv]			
sequential-sampling			
plan and [v] acceptance			
sampling.			Direct the students to
6.11 Explain quality and	Explain quality and		explain quality and risk
risk decisions.	risk decisions.		 decisions.

HND SLT PHYSICS WITH ELECTRONICS OPTION

LIST OF REQUIRED LABORATORY EQUIPMENT FOR PHYSICS LBORATORY

S/N	ITEMS	QUANTITY	REMARK
1.	Accumulator of various types	10	
2.	Air cell	5	
3.	Air thermometer, constant volume with mercury	2	
4.	Current Balance Apparatus	4	
5.	Electrical equivalent of Heat apparatus	5	
6.	The current balance accessory kit	5	
7.	Lenz law demonstrator apparatus	2	
8.	Bar magnets	20	
9.	Battery charger	1	
10.	Beam/triple balance	5	
11.	Capacitance box	2	
12.	Calorimeters	10	
13.	Compass needle	10	
14.	Digital timer, scaler and frequency counter	2	
15.	Force on a conductor balance	2	
16.	Geiger muller (G.M) tube	2	
17.	Radioactive sources (different types)	1each	
18.	Helium-Neon Laser	2	
19.	Magnetometer	2	
20.	Induction coil	2	
21.	Horse- shoe magnet	2	
22.	Meter Bridge	5	
23.	Wheatstone Bridge	5	
24.	Decade Resistance box (0-1, 111, 110 Ω in 1 Ω	5 each	

	increment)	
25.	Decade capacitance box $(100 \ pF - 11.11 \ \mu F \text{ in } 100 \ pF$	
	steps)	
26.	Latent Heat Apparatus	3
27.	Linear expansion Apparatus	5
28.	Micrometer screw gauges	5
29.	Mirrors (concave, convex of different diameters	10
30.	Rheostat	10
31.	Prism glass 60 [°] , 45 [°] , 90 [°]	10 each
32.	Galvanometers (Assorted: different ranges and ratings)	10 of each
33.	Jockey	10
34.	G-Clamp	10
35.	Three-finger clamp	10
36.	Joulemeter	2
37.	Keys (Reversing and tapping)	20
38.	Lee's Disc Apparatus	2
39.	Lens (different focal lengths)	3 each
40.	Optical Bench	3
41.	Ripple tank apparatus and accessory	1
42.	Digital stroboscope	1
43.	Spherometer	2
44.	Sound level meter	4
45.	Reed Switch	2
46.	Electromagnets	2
47.	Travelling microscope	4
48.	Newton's Ring Apparatus	1
49.	Constant volume/constant pressure air thermometer	1 each
50.	Digital balance	1
51.	X-ray apparatus	1

52.	Scanning microscope	1	
53.	Radon gas detector	1	
54.	Refractometer	1	
55.	Polarimeter	2	
56.	Heating mantle	2	
57.	Hot plate	5	
58.	3 – core cable	1 roll	
59.	Measuring cylinders (100cm ³ , 500cm ³ , 250cm ³ , etc)	2 each	
60.	Beakers (1000cm ³ , 500cm ³ , 250cm ³ , 100cm ³ , 50cm ³ , etc)	10 each	
61.	Test tubes	20	
62.	Solar cells (different types)	leach	
63.	Centre-tapped Transformer	10	
64.	Pasco radiation sensor	5	
65.	Heat conduction apparatus	2	
66.	Thermal conductivity apparatus	2	
67.	Thermal expansion apparatus	2	
68.	Pasco thermal radiation laboratory kit and accessory	2	
69.	Thermal radiation cube (Leslie's cube)	2	
70.	Thermal cavity laboratory kit and accessory	2	
71.	Thermodynamic kit and accessory		
72.	Window glass.	10	
73.	Stefan-Boltzmann lamp	10	
74.	Adiabatic gas law apparatus	2	
75.	Heat engine/gas law apparatus	2	
76.	Ideal gas law apparatus	2	
77.	Thermal efficiency apparatus	2	
78.	Stress/strain apparatus and accessory	2	
79.	Diffraction grating (transmission type).	5	

80.	Sensor - based diffraction system	2
81.	Diffraction optics kit	5
82.	High precision diffraction slits	10
83.	Pasco radiation sensor	5
84.	Heat conduction apparatus	2
85.	Thermal conductivity apparatus	2
86.	Thermal expansion apparatus	2
87.	Pasco thermal radiation laboratory kit and accessory	2
88.	Thermal radiation cube (Leslie's cube)	2
89.	Thermal cavity laboratory kit and accessory	2
90.	Window glass.	10
91.	Stefan-Boltzmann lamp	10
92.	Adiabatic gas law apparatus	2
93.	Clamp Meter	4
94.	Steam generator	10
95.	Breakers (assorted)	10 each
96.	Thermometer (assorted with different calibration ranges)	10 each
97.	Rubber tubing,	5
98.	Metal rods of aluminum, iron, copper, brass, and steel.	10 each
99.	Newton's law of cooling apparatus,	5
100.	Copper calorimeter with a wooden lid and stirrer	10 each
101.	Open double – walled vessel	5
102.	Stop clock/watch	20
103.	Heater/burner	10
104.	Clamp stand	20
105.	Rubber stoppers with holes and without holes	10 each
106.	Double - walled enclosure with cold water between the	5
	walls,	
107.	Lee's apparatus	5

108.	Steam generator	10
109.	Breakers (assorted)	10 each
110.	Thermometer (assorted with different calibration ranges)	10 each
111.	Rubber tubing,	5
112.	Metal rods of aluminum, iron, copper, brass, and steel.	10 each
113.	Newton's law of cooling apparatus,	5
114.	Copper calorimeter with a wooden lid and stirrer	10 each
115.	Open double – walled vessel	5
116.	Stop clock/watch	20
117.	Heater/burner	10
118.	Clamp stand	20
119.	Vernier calipers	10
120.	Micrometer gauge	10
121.	Meter ruler	20
122.	Wooden dowels of different diameter	5 each
123.	Liquid nitrogen with Dewar	5
124.	Thermocouple	10
125.	Optical rails	10
126.	Refrigerator	1
127.	Mercury arc lamp	10
128.	Measuring scale.	10
129.	Photoelectric apparatus with a phototube	5
130.	Tamiya solar panel	5
131.	Solar constant set	10
132.	Spectrometer accessory kit	5
133.	Brewster's angle accessory kit	5
134.	Precision interferometer accessory kit (with three modes:	3
	Michaelson, Fabry-Perot, and Twyman-Green).	
135.	Fiber Optics communication kit	3

136.	Laser communication kit	3
137.	Michaelson interferometer accessory kit	5
138.	Coulomb's law apparatus and accessory	3
139.	Complete e/m apparatus and accessory	
140.	Sodium and mercury light sources	10 each
141.	Millikan oil-drop apparatus accessory kits	3
142.	Speed of light apparatus and accessory	3
143.	Laser speed of light system	3
144.	Electron spin resonance (ESR) system and accessory kits	3
145.	Diffusion cloud chambers	2
146.	Plano-convex and Plano-concave lenses	10 each
147.	Labvolt circuit board "communication transmission lines" consisting of: 50 kHz step generator with impedance of 10, 25, 50, 100 and 500 Ohms	1
148.	Dielectric constant measurement trainer (NVIS 6111)	5
149.	Dielectric materials (Plastic and glass plates)	10 each
150.	Dynamometer	10
151.	Deflection magnetometer	10
152.	Basic coil sets and complete coil sets (primary and secondary coils, air core solenoid)	10 each
153.	Magnetizer	5
154.	Dynamometer	10
155.	Color filters (assorted)	10 each
156.	Polarizer analyzer kit and accessory	5
157.	Pulse Height Analyzer	2

HND SLT PHYSICS WITH ELECTRONICS OPTION LIST OF REQUIRED LABORATORY EQUIPMENT FOR ELECTRONICS LABORATORY

1.	Analog multimeter	10
2.	Avometer	10
3.	Ammeter (different ranges)	10
4.	Voltmeter (different ranges)	10
5.	Milliammeterfsigna (different ranges)	10
6.	Microammeter (different ranges)	10
7.	Digital multimeter (True RMS multimetr, Digital LCR meter)	10
8.	Cathode Ray Oscilloscope (Single beam)	2
9.	Cathode Ray Oscilloscope (Double beam)	3
10.	Signal generators (Audio Frequency)	2
11.	Signal generators (Radio Frequency)	3
12.	 Low voltage ac/dc power supply unit (0 - 24 V dc at 0 - 10 A) Kilovolt power supply (0 - 6 kV dc, 6.3 V/ac, 2 filament source) High voltage power supply (0-50 V dc at up to 50 mA, 0 - 500 V dc at up to 50 mA, 2 - 7 V ac at up to 3A) 	3 3 each 3 each
13.	Dc power supply (1 Amp at 18 V dc, 0-18Vdc at 0-5 A, 30 V dc, 6A)	3 each
14.	Triple output power supply (0-30 V dc at 0-3 A)	3
15.	Logic/Digital trainer	2
16.	Light Dependent resistor (LDR)	10
17.	Light Emitting Diodes (Yellow, Green, Red)	5each
18.	Complete mechanical tool box	1
19.	Complete electronics tool box	1
20.	Logic probe/pulser	2
21.	Bread board	20
22.	Vero Board	20

23.	Junction diodes (Assorted)	20
24.	Transistors (Assorted)	20
25.	Operational Amplifiers (Assorted)	10 of each
26.	74 series TTL logic Gates	20
27.	40 series CMOS logic Gates	10
28.	Binary counters (Assorted)	10
29.	Flip – flops	5
30.	Programmable ICs	10
31.	Resistors (standard of different values and rating)	10
32.	555 Timer	5
33.	Digital ICs	10
34.	Rectifier unit	5
35.	Capacitors (Assorted of different values and rating)	50
36.	Inductors (different values)	10
37.	Electronic softwares - workbench	1
	- Multism	1
	- Proteus	1
38.	Computer systems	5
39.	Multimedia projectors	1
40.	Soldering iron	10
41.	Solder sucker	10
42.	Solder lead	1 roll
43.	Rotary potentiometers (different values)	20
44.	Resistance apparatus and accessory	10
45.	RLC circuit kit	5
46.	Series/parallel circuit kit	5
47.	Resistor-Capacitor circuit kit	5
48.	Ac/dc Electronics Laboratory kit and accessory	3
49.	Ac/dc motor (accessory to variable lab magnet)	5

50.	Resistance apparatus	5
51.	Power regulators (78 and 79 series)	5 of each
52.	Telephone cable	1 roll
53.	3-core cable	1 roll
54.	Spectrophotometer accessory kit	3
55.	Digital Modulation Trainer Kit	3
56.	Power electronic trainer kits	3
57.	Quantitative spectroscopes	5
58.	LED circuit board	10
59.	Adjustable voltage dc power supply	5
60.	Demo AS-13 flame test kit	5
61.	Spectronic 200 spectrometer;	10
62.	Concentrated food colors in dropper bottles (red, yellow, green, blue);	20 each.
63.	Incandescent light bulb fixture	10
64.	Light emitting diodes (LEDs) of several colors	10 each
65.	Photocathode /ammeter apparatus	5
66.	Digital voltmeter	10
67.	Zeeman effect apparatus	5
68.	Turning – eye vacuum tube (6AF6)	5
69.	Air-core solenoid	10
70.	Rheostat, dc ammeter (0 to 5A)	5
71.	Connecting wires	10 rolls
72.	Electric furnace	5
73.	Silicon wafer	10
74.	Universal measuring amplifier, voltmeter,	10 each
75.	Adapters, and T-connectors	10 each
76.	Analogue and digital Gauss/ Telsa meter	5 each
77.	Strong neodymium magnet 50 grade. dimension 50*20*10 mm,	10 each
78.	Dc circuit training system	5

79.	Universal circuit board	10
80.	Alligator clips and adaptors	10 each
81.	Banana plug cord sets	10
82.	Series/parallel battery holders	10 each
83.	Light bulbs and stand	20
84.	Light bulbs sockets	10
85.	Switch sets	10
86.	Digital RPS (0-30) V	10
87.	Power supply module EMS 8821	5
88.	- ac voltmeter module EMS 8426,	5 each
	- ac current meter module EM.S 8428,	
	- resistance module EMS 8311,	
	- inductance module EMS 8321,	
	- capacitance module EMS 8321	
89.	Digital Storage oscilloscope (DSO)	5
90.	Analog storage oscilloscope (ASO)	5
91.	Dual Trace oscilloscope (20 MHz)	5
92.	Function generator (0.001 Hz – 100 kHz, 0.2Hz – 5 MHz)	5 each
93.	Multimeter/LCR meter	10
94.	Multi-function meter,	10
95.	Three-phase dimmer stat	10
96.	Field and detector coils	10
97.	Electromagnetism equipment set	5
98.	Labvolt circuit board "communication transmission lines"	5
99.	Tektronix TDS2000 oscilloscope	5
100.	LAB transmission line demonstrator	5
101.	Digital logic trainer	5
102.	8-Bits Microcontroller/Microprocessor Kits (Arduino Kit is handy).	5
103.	LCD1602 Module visual output device	10

104.	LED apparatus.	5	
105.	Sine-wave generator	5	
106.	Q-Meter	5	
107.	Q-Meter Adapter	5	
108.	Carey Foster Bridge	4	

LIST OF PARTICIPANTS AT THE HND SCIENCE LABORATORY TECHNOLOGY (PHYSICS WITH ELECTRONICS) CURRICULUM REVIEW WORKSHOP FROM 28TH JUNE, TO 2ND JULY, 2021 AT THE NBTE CONSULT, KADUNA

S/N	NAME	ADDRESS	PHONE NUMBER	E-MAIL
1.	Prof. M.S. Abubakar	Kaduna State University, Kaduna	08036276839	msabubakar@kasu.edu.ng
2.	Dr. Sabo Wada Dutse	Hussaini Adamu Federal Polytechnic,	08035860235	swdutse@gmail.com
		Kazaure		
3.	Dr. Mathew E. Oboh	Auchi Polytechnic, Auchi	08035475950	meoboh@hotmail.com
4.	Suleiman Ndiriza	Federal Polytechnic,	07068322550mailto:s	sndiriza@yahoo.com
		Nasarawa	hehualhajibaba@gma	
			<u>il.com</u>	
5.	Uhiara Fidelis	Federal Polytechnic, Nekede	08033366965	uhiarafidel2@gmail.com
6.	Abdulwaheed Amusa	Kaduna Polytechnic, Kaduna	07035662200	waheedamusa6@gmail.com
		Representative,		
		Nigeria Institute for Science		
		Laboratory Technology		
7.	TpL Ekpenyong E.E	No. 60 Kiana Close,	08023110987	ekpenyonge@gmail.com
		NBTE Quarters, Kadunass		
NBTE	NBTE STAFF			
1.	Prof. Idris M. Bugaje	Executive Secretary,		es@nbte.gov.ng
		N.B.T.E, Kaduna		
2.	Engr. Usman Danjuma J.	NBTE, Kaduna	08033638667	ujdanjuma@gmail.com
3.	Garba Mohammed	NBTE, Kaduna	08064954042	gnalado@ymail.com
	Nalado			
4.	Dr. Fatima K. Umar	NBTE, Kaduna	08034521639	fatikmama@yahoo.com
5.	Halilu Aminu	NBTE, Kaduna	<u>08037874921</u>	aminuhalilu.nbte@gmail.com

6.	Bashir I. Danmulki	NBTE, Kaduna	08023110407	dimulk@yahoo.com
7.	Osoba Oluwaseun	NBTE, Kaduna	08037865206	tuks4me@gmail.com
8.	Dauda B Moh'd	NBTE, Kaduna	08035867570	daudababahalah@gmail.com
9.	Nana Asmau Abba	NBTE, Kaduna	08128030468	nanaasmauabba16@gmail.com
10.	Jummai Haruna	NBTE, Kaduna	08065323169	zagizagibaby@gmail.com
11.	Mrs. Rabi Sani	NBTE, Kaduna	08036913246	rabohio1@gmail.com
12.	Mal. Mustafa Aminu	NBTE, Kaduna	07032281995	mustafarimi@yahoo.com
13	Mahmud Tukur Tahir	NBTE, Kaduna	08038309634	teekaytaheer@gmail.com